Anti-inflammatory, antioxidant and antinociceptive activities of Russelia coccinea (L.) Wettst.

Document Type : Short communication

Authors

1 Laboratory of Chemistry of Natural Products and Pharmacognosy, Faculty of Pharmacy, Autonomous University of the State of Morelos (UAEM). Morelos, México.

2 Laboratory of Pharmacology, Center of Biomedical Research of the South, Mexican Institute of Social Security (IMSS). Morelos, México.

Abstract

Objective: Some species of the Russelia genus have been used  different illnesses associated with pain and inflammation. The aim of this work was to characterize the biological activities (anti-inflammatory and analgesic) and antioxidant capacity of methanol and dichloromethane extracts of Russelia coccinea.
Materials and Methods: In this study, topical anti-inflammatory activity was tested in an in vivo model of 12-O-tetradecanoylphorbol acetate (TPA) induced mouse ear edema of organic extracts (doses: 0.03, 0.1, and 0.3 mg/ear). The antinociceptive activity was assessed using the formalin test in mice of organic extracts (doses: 56, 100 and 300 mg/kg ). Moreover, the antioxidant capacity of the extracts was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiaziline-6-sulfonate) (ABTS) and ferric reducing antioxidant power (FRAP) assays.
Results: Methanol (RcM) and dichloromethane (RcD) extracts of the R. coccinea aerial parts were found to inhibit ear edema (48.95 and 40.13%, respectively) at a dose of 0.3 mg/ear. Acute treatment with RcM produced a significant antinociceptive effect in the late phase of formalin-induced nociception. Moreover, RcM at doses of 56, 100 and 300 mg/kg showed a significant antinociceptive effect through the early and late phases in the formalin test. RcM and RcD showed weak antioxidant capacities in the ABTS and DPPH assays; however, when their reducing capacity was evaluated by the FRAP assay, RcM showed a reducing activity similar to Camellia sinensis standard at the proven concentration of 1000 μg/ml.
Conclusion: According to the experimental findings, the organic extracts of R. coccinea display remarkable antinociceptive and anti-inflammatory activities.

Keywords


Afzal S, Aslam M, Janbaz K, Ahmad M, Ghori
M, Khurm M, Chaudhry B, Uzair M, Nawaz
S, Bibi M, Qaiser M. 2017. Preliminary
Phytochemical and Biological activities on
Russelia juncea Zucc. Dialogo J, 4: 159–
174.
Ahmed E, Desoukey S, Fouad M, Kamel M.
2016. A pharmacognostical study of
Russelia equisetiformis Sch. & Cham. Int J
Pharmacogn Phytochem Res, 8: 174–192.
Ali S, Mohamed A, Mohammed G. 2014. Fatty
acid composition, anti-inflammatory and
analgesic activities of Hibiscus sabdariffa
Linn. seeds. J Adv Vet Anim Res, 1: 50–57.
Arulselvan P, Fard M, Tan W, Gothai S,
Fakurazi S, Norhaizan M, Kumar S. 2016.
Role of Antioxidants and Natural Products
in Inflammation. Oxid Med Cell Longev,
2016: 1–15.
Awe E, Adeloye A, Idowu T, Olajide O,
Makinde J. 2008. Antinociceptive effect of
Russelia equisetiformis leave extracts:
Identification of its active constituents.
Phytomedicine, 15: 301–305.
Awe E, Makinde J, Olajide O, Wakeel O. 2004.
Evaluation of the anti-inflammatory and
analgesic properties of the extract of
Russelia equisetiformis (Schlecht & Cham)
Scrophulariacae. Inflammopharmacology,
12: 399–405.
Bralley E, Greenspan P, Hargrove J, Wicker L,
Hartle D. 2008. Topical anti-inflammatory
activity of Polygonum cuspidatum extract in
the TPA model of mouse ear inflammation.
J Inflamm, 5: 1–7.
Burns D, Reynolds W, Buchanan G, Reese P,
Enriquez R. 2000. Assignment of 1H and 13C
spectra and investigation of hindered side‐
chain rotation in lupeol derivatives. Magn
Reson Chem, 38: 488–493.
Columba-Palomares MC, Villarreal ML,
Marquina S, Romero-Estrada A, Zamilpa
Alvarez, A, Alvarez L. 2018.
Antiproliferative and anti-inflammatory
acyl glucosyl flavones from the leaves of
Bursera copallifera. J Mex Chem Soc, 62:
78–88.
Dubuisson D, Dennis S. 1977. The formalin
test: A quantitative study of the analgesic
effects of morphine, meperidine, and brain
stem stimulation in rats and cats. Pain, 4:
161–174.
Firuzi O, Lacanna A, Petrucci R, Marrosu G,
Saso L. 2005. Evaluation of the antioxidant
activity of flavonoids by “ferric reducing
antioxidant power” assay and cyclic
voltammetry. Biochim Biophys Acta - Gen
Subj, 1721: 174–184.
Hunskaar S, Hole K. 1987. The formalin test in
mice : dissociation between. Pain, 30: 103–
114.
Johnson C, Lin L, Harnly J, Oladeinde F,
Kinyua A, Michelin R, Bronner Y. 2011.
Identification of the Phenolic Components
of Vernonia amygdalina and Russelia
equisetiformis. J Nat Prod, 4: 57–64.
Khalilzadeh E, Vafaei Saiah G, Hasannejad H,
Ghaderi A, Ghaderi S, Hamidian G,
Mahmoudi R, Eshgi D, Zangisheh M. 2015.
Antinociceptive effects, acute toxicity and
chemical composition of Vitex agnus-castus
essential oil. Avicenna J Phytomed, 5: 218–
30.
Kolawole OT, Kolawole SO. 2010. Effects of
Russelia equisetiformis methanol and
aqueous extracts on hepatic function
indices. Biol Med, 2: 38–41.
MacDonald-Wicks LK, Wood LG, Garg ML.
2006. Methodology for the determination of
biological antioxidant capacity in vitro: A
review. J Sci Food Agric, 86: 2046–2056.
Medeiros R, Otuki MF, Avellar MCW, Calixto
JB. 2007. Mechanisms underlying the
inhibitory actions of the pentacyclic
triterpene α-amyrin in the mouse skin
inflammation induced by phorbol ester 12-
O-tetradecanoylphorbol-13-acetate. Eur J
Pharmacol, 559: 227–235.
Missouri Botanical Garden. 2019.
Tropicos|Name-Russelia coccinea (L.)
Wettst.
Monroy-Ortiz, C., Castillo- España, P., 2007.
Plantas medicinales utilizadas en el estado
de Morelos, 2a edición. ed. Cuernavaca,
Mor.
Moreno-Quirós C, Sánchez-Medina A,
Vázquez-Hernández M, Hernández Reyes
A, García-Rodríguez R. 2017. Antioxidant,
anti-inflammatory and antinociceptive
potential of Ternstroemia sylvatica Schltdl.
& Cham. Asian Pac J Trop Med, 10: 1047–
1053.
Olorunju A, Adewale A, Modupe M. 2012.
Columba-Palomares et al.
AJP, Vol. 11, No. 2, Mar-Apr 2021 108
Anti-inflammatory activity of Russelia
equisetiformis Schlecht and Cham:
identification of its active constituent. J
Intercult Ethnopharmacol, 1: 25.
Ortiz MI, Castañeda-Hernández G. 2008.
Examination of the interaction between
peripheral lumiracoxib and opioids on the
1% formalin test in rats. Eur J Pain, 12: 233–
241.
Patil K, Mahajan U, Unger B, Goyal S,
Belemkar S, Surana S, Ojha S, Patil CR.
2019. Animal models of inflammation for
screening of anti-inflammatory drugs:
Implications for the discovery and
development of phytopharmaceuticals. Int J
Mol Sci, 20: 1-38.
Rahman A, 2001. Studies in natural products
chemistry. Volume 54: bioactive natural
products, pp. 1-1036, Elsevier S. ed. Oxford
UK.
Romero-Estrada A, Maldonado-Magaña A,
González-Christen J, Bahena S, GarduñoRamírez, ML, Rodríguez-López V, Alvarez
L. 2016. Anti-inflammatory and
antioxidative effects of six pentacyclic
triterpenes isolated from the Mexican copal
resin of Bursera copallifera. BMC
Complement Alternat Med, 16: 422.
Shibata M, Ohkubo T, Takahashi H, Inoki R.
1989. Modified formalin test: characteristic
biphasic pain response. Pain, 38: 347–352.
Tjølsen A, Berge OG, Hunskaar S, Rosland JH,
Hole K. 1992. The formalin test: an
evaluation of the method. Pain, 51: 5–17.
Winyard PG, Willoughby DA. 2003.
Inflammation Protocols. pp. 1-377. Humana
Press, New Jersey.
Young JM, Wagner BM, Spires DA. 1983.
Tachyphylaxis in 12-0-
tetradecanoylphorbol acetate- and
arachidonic acid-induced ear edemaInvest .
Dermatol, 80: 48-82.