The effects of all trans retinoic acid, vitamin D3 and their combination on plasma levels of miRNA-125a-5p, miRNA-34a, and miRNA-126in an experimental model of diabetes

Document Type : Original Research Article

Authors

1 Department of Clinical Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran

2 Department of Medical Genetics, School of Medicine, Guilan University of Medical Science, Rasht, Iran. Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Science, Rasht, Iran

3 Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

4 Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran

Abstract

Objective: The purpose of this study was to evaluate the effects of ATRA (all trans retinoic acid), vitamin D3, and their combination on circulating levels of miR (MicroRNA) -125a-5p, miR-126, and miR-34ain diabetic rats.
Materials and Methods: Total miRNA was extracted from plasma samples. miRNA expression profiles of 30 rats in five groups were analyzed after 4-week intervention. The expression levels of miRNAs were measured using qRT-PCR.
Results: We analyzed the expression of miR-126, miR-125a-5p, and miR-34a in serum among all five groups (p=0.268). The levels of miRNA-126 (p=0.004) and miR-125a-5p (p=0.014) showed a significant difference among our experimental groups. The circulating levels of miR-126 decreased in DC (Diabetic control) group compared to the HC (Healthy control) group (p=0.009). In addition, vitamin D3+ATRA supplementation increased miR-126 expression (p=0.014). Moreover, the levels of miR-125a-5p decreased in the DC group compared to the HC group (p=0.019).
Conclusion: The expression of miR-126 and miR-125a-5p decreased in diabetic rats. Also, vitamin D3+ATRA can be considered a new therapeutic agent that can elevate miR-126 expression and prevent diabetes-related cardiovascular complications.

Keywords


Alles J, Fehlmann T, Fischer U, Backes C,
Galata V, Minet M, Hart M, Abu-Halima
M, Grässer FA, Lenhof H-P, Keller A,
Meese E. 2019. An estimate of the total
number of true human miRNAs. Nucleic
Acids Res, 47: 3353-3364.
Sharifzadeh et al.
AJP, Vol. 12, No. 1, Jan-Feb 2022 74
Böhm F, Pernow J. 2007. The importance of
endothelin-1 for vascular dysfunction in
cardiovascular disease. Cardiovasc Res,76:
8-18.
Chambon P. 1996. A decade of molecular
biology of retinoic acid receptors. The
FASEB Journal, 10: 940-954.
Chen K-C, Wang Y-S, Hu C-Y, Chang W-C,
Liao Y-C, Dai C-Y, Juo S-H. 2011.
OxLDL up-regulates microRNA-29b,
leading to epigenetic modifications of
MMP-2/MMP-9 genes: a novel mechanism
for cardiovascular diseases. The FASEB
Journal, 25: 1718-1728.
Chen T, Huang Z, Wang L, Wang Y, Wu F,
Meng S, Wang C. 2009. MicroRNA-125a5p partly regulates the inflammatory
response, lipid uptake, and ORP9
expression in oxLDL-stimulated
monocyte/macrophages. Cardiovasc Res,
83: 131-139.
Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K,
Guo J, Zhang Y, Chen J, Guo X. 2008.
Characterization of microRNAs in serum: a
novel class of biomarkers for diagnosis of
cancer and other diseases. Cell Res, 18:
997-1006.
Churov A, Summerhill V, Grechko A,
Orekhova V, Orekhov A. 2019.
MicroRNAs as Potential Biomarkers in
Atherosclerosis Int J Mol Sci, 20: 5547.
Collins S. 2002. The role of retinoids and
retinoic acid receptors in normal
hematopoiesis. Leukemia, 16: 1896.
Garzon R, Pichiorri F, Palumbo T, Visentini
M, Aqeilan R, Cimmino A, Wang H, Sun
H, Volinia S, Alder H, Calin GA, Liu CG,
Andreeff M, Croce CM. 2007. MicroRNA
gene expression during retinoic acidinduced differentiation of human acute
promyelocytic leukemia Oncogene, 26:
4148-4157.
Giangreco AA, Nonn L. 2013. The sum of
many small changes: microRNAs are
specifically and potentially globally altered
by vitamin D3 metabolites.The Journal of
steroid biochemistry and molecular
biology, 136: 86-93.
Gonzalez A, Deng Y, Lane A, Benkeser D,
Cui X, Staimez L, Ford C, Khan F,
Markley Webster S, Leong A. 2020. Impact
of mismatches in HbA1c vs glucose values
on the diagnostic classification of diabetes
and prediabetes. Diabet Med, 37: 689-696.
Gradinaru D, Borsa C, Ionescu C, Margina D,
Prada GI, Jansen E. 2012. Vitamin D status
and oxidative stress markers in the elderly
with impaired fasting glucose and type 2
diabetes mellitus. Aging Clin Exp Res, 24:
595-602.
Gurzov EN, Eizirik DL. 2011. Bcl-2 proteins
in diabetes: mitochondrial pathways of βcell death and dysfunction. Trends Cell
Biol, 21: 424-431.
Haffner SM, Lehto S, Rönnemaa T, Pyörälä K,
Laakso M. 1998. Mortality from coronary
heart disease in subjects with type 2
diabetes and in nondiabetic subjects with
and without prior myocardial infarction.
New Engl J Med, 339: 229-234.
He A, Zhu L, Gupta N, Chang Y, Fang F.
2007. Overexpression of micro ribonucleic
acid 29, highly up-regulated in diabetic
rats, leads to insulin resistance in 3T3-L1
adipocytes. Mol Endocrinol, 21: 2785-
2794.
Hsieh T-H, Hsu C-Y, Tsai C-F, Long C-Y,
Chai C-Y, Hou M-F, Lee J-N, Wu D-C,
Wang S-C, Tsai E-M. 2015. miR-125a-5p
is a prognostic biomarker that targets
HDAC4 to suppress breast tumorigenesis.
Oncotarget, 6: 494.
Jorde R, Svartberg J, Joakimsen RM,
Coucheron DH. 2012. Plasma profile of
microRNA after supplementation with high
doses of vitamin D3 for 12 months. BMC
Res Notes, 5: 245.
King GL. 2008. The role of inflammatory
cytokines in diabetes and its complications.
J Periodontol, 79: 1527-1534.
Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao
Y, Dong Q, Pang Z, Guan Q, Gao L. 2011.
Significance of serum microRNAs in prediabetes and newly diagnosed type 2
diabetes: a clinical study. Acta Diabetol,
48: 61-69.
Lin X, Guan H, Huang Z, Liu J, Li H, Wei G,
Cao X, Li Y. 2014. Downregulation of Bcl2 expression by miR-34a mediates
palmitate-induced Min6 cells apoptosis. J
Diabetes Res, 2014.
Liu Y, Gao G, Yang C, Zhou K, Shen B,
Liang H, Jiang X. 2014. The role of
circulating microRNA-126 (miR-126): a
novel biomarker for screening prediabetes
and newly diagnosed type 2 diabetes
mellitus. Int J Mol Sci, 15: 10567-10577.
Lovic D, Piperidou A, Zografou I, Grassos H,
Pittaras A, Manolis A. 2020. The growing
Plasma level of miRNAs respond to vitamin D and vitamin A supplementation
AJP, Vol. 12, No. 1, Jan-Feb 2022 75
epidemic of diabetes mellitus. Curr Vasc
Pharmacol, 18: 104-109.
Macfarlane L-A, Murphy PR. 2010.
MicroRNA: Biogenesis, function and role
in cancer. Curr Genomics, 11: 537-561.
Massart J, Sjögren RJO, Lundell LS, Mudry J
M, Franck N, O'Gorman DJ, Egan B,
Zierath JR, Krook A. 2017. Altered miR-29
expression in type 2 diabetes influences
glucose and lipid metabolism in skeletal
muscle. Diabetes, 66: 1807-1818.
Meléndez‐Martínez AJ. 2019. An overview of
carotenoids, apocarotenoids, and vitamin A
in agro‐food, nutrition, health, and disease.
Mol Nutr Food Res, 63: 1801045.
Meng S, Cao J-T, Zhang B, Zhou Q, Shen CX, Wang C-Q. 2012. Downregulation of
microRNA-126 in endothelial progenitor
cells from diabetes patients, impairs their
functional properties, via target gene Spred1. J Mol Cell Cardiol, 53: 64-72.
Mocharla P, Briand S, Giannotti G, Dörries C,
Jakob P, Paneni F, Lüscher T, Landmesser
U. 2013. AngiomiR-126 expression and
secretion from circulating CD34+ and
CD14+ PBMCs: role for proangiogenic
effects and alterations in type 2 diabetics.
Blood, 121: 226-236.
Nakhjavani M, Khalilzadeh O, Khajeali L,
Esteghamati A, Morteza A, Jamali A,
Dadkhahipour S. 2010. Serum oxidizedLDL is associated with diabetes duration
independent of maintaining optimized
levels of LDL-cholesterol. Lipids, 45: 321-
327.
Nozaki Y, Yamagata T, Sugiyama M, Ikoma
S, Kinoshita K, Funauchi M. 2006. Antiinflammatory effect of all-trans-retinoic
acid in inflammatory arthritis. Clin
Immunol,119: 272-279.
Pino‐Lagos K, Guo Y, Noelle RJ. 2010.
Retinoic acid: a key player in immunity.
BioFactors, 36: 430-436.
Qin B, Xiao B, Liang D, Xia J, Li Y, Yang H.
2011. MicroRNAs expression in ox-LDL
treated HUVECs: MiR-365 modulates
apoptosis and Bcl-2 expression. Biochem
Biophys Res Commun, 410: 127-133.
Raitoharju E, Lyytikäinen L-P, Levula M,
Oksala N, Mennander A, Tarkka M, Klopp
N, Illig T, Kähönen M, Karhunen PJ. 2011.
miR-21, miR-210, miR-34a, and miR146a/b are up-regulated in human
atherosclerotic plaques in the Tampere
Vascular Study. Atherosclerosis, 219: 211-
217.
Roggli E, Britan A, Gattesco S, Lin-Marq N,
Abderrahmani A, Meda P, Regazzi R.
2010. Involvement of microRNAs in the
cytotoxic effects exerted by
proinflammatory cytokines on pancreatic βcells. Diabetes, 59: 978-986.
Ross SA, McCaffery PJ, Drager UC, De Luca
L M. 2000. Retinoids in embryonal
development. Physiol Rev, 80: 1021-1054.
Rudijanto A. 2007. The role of vascular
smooth muscle cells on the pathogenesis of
atherosclerosis. Acta Med Indones, 39: 86-
93.
Stöger JL, Gijbels MJ, van der Velden S,
Manca M, van der Loos CM, Biessen EA,
Daemen MJ, Lutgens E, de Winther MP.
2012. Distribution of macrophage
polarization markers in human
atherosclerosis. Atherosclerosis, 225: 461-
468.
Tang X, Tang G, Ozcan S. 2008. Role of
microRNAs in diabetes. Biochim Biophys
Acta, 1779: 697-701.
Wang R-J, Zheng Y-H, Wang P, Zhang J-Z.
2015. Serum miR-125a-5p, miR-145 and
miR-146a as diagnostic biomarkers in nonsmall cell lung cancer. Int J Clin Exp
Pathol, 8: 765.
Wang S, Aurora AB, Johnson BA, Qi X,
McAnally J, Hill JA, Richardson JA,
Bassel-Duby R, Olson EN. 2008. The
endothelial-specific microRNA miR-126
governs vascular integrity and
angiogenesis. Dev Cell, 15: 261-271.
Wegner M, Piorunska-Stolzmann M,
Araszkiewicz A, Zozulinska-Ziolkiewicz
D, Naskret D, Uruska A, Wierusz-Wysocka
B. 2012. Does oxidized LDL contribute to
atherosclerotic plaque formation and
microvascular complications in patients
with type 1 diabetes? Clin Biochem, 45:
1620-1623.
Xu L, Li Y, Yin L, Qi Y, Sun H, Sun P, Xu M,
Tang Z, Peng J. 2018. miR-125a-5p
ameliorates hepatic glycolipid metabolism
disorder in type 2 diabetes mellitus through
targeting of STAT3. Theranostics, 8: 5593-
5609.
Zampetaki A, Kiechl S, Drozdov I, Willeit P,
Mayr U, Prokopi M, Mayr A, Weger S,
Oberhollenzer F, Bonora E. 2010. Plasma
MicroRNA profiling reveals loss of
endothelial MiR-126 and other MicroRNAs
Sharifzadeh et al.
AJP, Vol. 12, No. 1, Jan-Feb 2022 76
in type 2 DiabetesNovelty and significance.
Circ Res, 107: 810-817.
Zechel C. 2005. Requirement of retinoic acid
receptor isotypes α, β, and γ during the
initial steps of neural differentiation of
PCC7 cells. Mol Endocrinol, 19: 1629-
1645.
Zhang E, Wu Y. 2013. MicroRNAs: important
modulators of oxLDL-mediated signaling
in atherosclerosis. J Atheroscler Thromb,
20: 215-227.
Zhang T, Lv C, Li L, Chen S, Liu S, Wang C,
Su B. 2013. Plasma miR-126 is a potential
biomarker for early prediction of type 2
diabetes mellitus in susceptible individuals.
Biomed Res Int, 2013.
Zhang X, Gong X, Han S, Zhang Y. 2014.
MiR-29b protects dorsal root ganglia
neurons from diabetic rat. Cell Biochem
Biophys, 70: 1105-1111.