Review Article

Tadābīr-i-Mashā'ikh (geriatric care) in Greco-Arabian (traditional) medicine: Concept, guidelines, potential geroprotective activity, and present-day relevance

Sadia Nikhat¹, Mohammad Fazil^{2,*}

- ¹ Department of Ilaj bit Tadbeer, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi-110062, India
- ²Hakim Ajmal Khan Institute for Literary and Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Jamia Millia Islamia Campus, New Delhi-110025, India

Article history:

Received: Jul 09, 2025 Received in revised form: Aug 26, 2025 Accepted: Aug 27, 2025 Epub ahead of print

* Corresponding Author:

Tel: +91-9818345757 Fax: +91-20059663 fazilmd00@gmail.com

Keywords:

Aging Geriatrics Senescence Tadābīr-i-Mashā'ikh Islamic traditional medicine

Abstract

Objective: This narrative review is done with the aim to explore the guidelines and the scientific rationale of Islamic traditional medicine for elderly care. By synthesizing information from Unani classical literature and published research work, we intend to present the potential role of Islamic traditional medicine in mitigating age-related physiological decline.

Materials and Methods: The classical literature of Islamic traditional medicine was reviewed for information on geriatric care, and the medicines prescribed for common geriatric problems. Also, leading scientific websites were searched for researches conducted on Islamic traditional medicine drugs, which provided evidence of their efficacy in age-related disorders.

Results: The main principle of geriatric care in Islamic traditional medicine is to prevent the loss of innate fluids and innate heat, and prevent the accumulation of abnormal heat and fluids. Besides, the *mufatteḥ-i-sudad* (de-obstruent) measures are given utmost importance, and they aim to remove accumulated matter, and restore the physiological processes. This is important as many disorders of old-age arise from stasis of morbid matter, or sluggish physiological processes, as observed in recent researches. Further, many medicinal foods such as fennel, honey, fig, honey, etc. are prescribed to prevent and mitigate aging problems.

Conclusion: Islamic traditional medicine offers practical, applicable, and cost-effective guidelines for elderly healthcare. With the global elderly population projected to rise significantly in the coming decades, integrating Unani principles into geriatric care could offer sustainable and culturally resonant solutions.

Please cite this paper as:

Nikhat S, Fazil M. *Tadābīr-i-Mashā'ikh* (geriatric care) in Greco-Arabian (Islamic traditional) medicine: Concept, guidelines, potential geroprotective activity, and present-day relevance. Avicenna J Phytomed, 2025. Epub ahead of print.

Introduction

The decade 2021-2030 has been declared as the *United Nations Decade of*

Healthy Ageing. This not only emphasizes the need to address the complex health concerns of the elderly in a specialized manner, but also underscores the necessity of maximizing their functional abilities over the course of life, to improve their overall well-being (WHO 2024). The physiological changes associated with advancing age, presence of chronic diseases, and various psycho-social factors cause a gradual decline in intrinsic with advancing capacities Consequently, the elderly are likely to suffer from myriad health problems like increased risk of infections, immunesenescence, osteopenia, atherosclerosis, and neurodegenerative disorders, (Wick et al. 2000). The progress in medical sciences over the last century has led to a remarkable increase in life-expectancy, which is postulated to continue growing in the coming decades. It is speculated that by 2050, there will be more than 70 million oldest-old people (aged > 90 years) worldwide (Fernández-Blázquez et al. 2021). This increase is likely to lead to an unprecedented number of people suffering from age-related problems. In such a scenario, there is an imperative need to take steps to prevent and delay the aging complications, and to increase healthspan, besides lifespan (i.e. biological age vs. chronological age) (Campisi et al. 2019).

In this context, Islamic traditional medicine and other herbal medicine systems can potentially play a significant role. Unani System of Medicine (USM) is a traditional medicine system included in Indian Systems of Medicine and known by the acronym 'AYUSH' (Ayurveda, Yoga, Unani. Siddha. and Homeopathy) (Mohanty et al. 2024). The word Unani refers to its Greek origin. The rudimentary Hellenistic medicine was subsequently organized, systematized, and developed by scholars from Muslim scholars during the medieval ages. Hence, it is referred to by various names like Persian medicine, Islamic traditional medicine. Greco-Arabian medicine in different parts of the world (Masic 2012). In Islamic Traditional Medicine (ITM), geriatric health discussed under the term 'Tadābīr-iMashā'ikh' which are a set of guidelines which include specific preventive and therapeutic measures for the elderly, besides recommendations for a healthy lifestyle (diet, physical activity, recreation, etc.) in old-age (Ibn Sinā 1593).

As the global population ages, the need for holistic and culturally rooted healthcare systems becomes increasingly vital. Islamic traditional medicine (ITM), with its rich heritage and individualized approach, offers a unique perspective on aging and geriatric care. In a recent nationwide survey Longitudinal Aging Study in India (LASI) among older adults (age > 60 years, n =31,464), it was observed that AYUSH consultation is common among older adults regardless of socio-economic (religion, residence and caste) (Mohanty et al. 2024). Another study in Shanghai revealed that approximately 50% of elderly preferred to use traditional medicine for diseases, cardiovascular respiratory diseases. diseases, nervous system prostatitis, cancer, and arthritis (Xin et al. 2020). Studies in industrialized countries have also revealed a growing popularity of traditional medicine in all age-groups, due to the provision of culturally-appropriate care (Ijaz et al. 2021), which might be one of the reasons of its preference among the

Contemporary researches have also substantiated that herbal medicines can be safely and effectively utilized for common geriatric health problems. For instance, cinnamon derived from Cinnamomum trees can improve lipid profile, insulin resistance, and blood pressure (Gheflati et al. 2023). Similarly, Coriandrum sativum L., a common herb used as culinary seasoning, has neuroprotective, antioxidant, and antiinflammatory activity (Hosseini et al. 2021). Carvacrol, a monoterpenoid phenol present in several aromatic plants of Lamiaceae Verbenaceae, has and anti-neurodegenerative significant memory-enhancing activity (Azizi et al. 2022).

With this background, we aimed to explore the USM literature for recommendations on care of elderly, the preventive and therapeutic measures described therein, and scientific rationale of their efficacy.

Materials and Methods

primarily studied **ITM** the textbooks for information on geriatric care and the common medicinal foods and drugs prescribed in geriatric age as healthprotective and preservative. In the next step, we explored scientific literature and studies for corroboration of their efficacy. The leading scientific websites PubMed, ScienceDirect, and Medline were explored for articles with the keywords 'geriatric', 'anti-aging', 'health-protective' and more as per need, along with the names of the drugs. Inclusion criteria followed were: (i) Studies in which, the drugs were studied exclusively on old-age patients (age ≥ 50 years), or in which, geriatric patients were included in the test group, (ii) the drug was used in single form, rather than as part of a formulation, (iii) English language articles, (iv) published from the year 2000 onwards, and (v) studies conducted on the same part of the drug which is prescribed in USM literature. Preference was given to clinical studies and those studies in which, the drug was used in the same form as described in USM. Owing to the large number of publications, all could not be included, we preferred those which studied the drug from a broader perspective, and where the antisenescence activity of the drug could be linked to specific phytochemicals. All botanical names were verified from The WFO Plant List (https://wfoplantlist.org/).

Results

Approach to health protection of elderly in Islamic traditional medicine:

In USM, aging is explained in terms of $r\bar{u}h$ (closest synonym in English-pneuma or spirit; plural- $arw\bar{a}h$), $miz\bar{a}j$ (temperament),

ruṭūbāt usṭuqussiyya or ruṭūbāt-i-gharīziyya (innate fluids or innate moisture), and ḥarārat-i-gharīziyya (calidum innatum or innate heat). The concepts are explained in brief.

According to Unani philosophy, harārat-i-gharīziyya is the innate heat generated within the body by various metabolic processes (Ibn Sinā, 1879). It is also explained that the *harārat-i-gharīzivya* is fortified by the $r\bar{u}h$ and sustained by ruţūbāt-i-gharīziyya (innate fluids). The concept of $r\bar{u}h$ is perhaps the most enigmatic one and hence, cannot be translated into an English equivalent which conveys its complete meaning. It is similar to the concept of qi in Chinese medicine, prana in Ayurvedic medicine, and 'soul' in Arabic and Islamic cultures (Abu-Asab et al. 2013). In USM, rūh is described as a light gaseous substance which is obtained from the interaction between the air of inspiration and body humors (WHO 2022), and is vital for generation of innate heat (Abu-Asab et al. 2013). The $r\bar{u}h$ is unique for each system, e.g. rūḥ-i-nafsāniyya (psychic pneuma, the pneuma found in organs of the psychic faculty whose center is the brain), rūh haywāniyya (vital pneuma, the pneuma found in organs of the vital faculty, whose center is the heart), etc. (WHO 2022). With in-depth understanding ventilation-perfusion, it is elucidated that respiratory gas exchange actually takes place in peripheral tissues, and the environment which facilitates this exchange, is distinctive for each tissue (West 2011). This makes it clear that the pneuma or $r\bar{u}h$ is not just the oxygen in inspired air, but the actual environment of tissues which is responsible for their vitality.

The ruṭūbāt-i-gharīziyya, also known as ruṭūbāt usṭuqussiyya (innate fluids) are created from the fluids consumed, which are subjected to various physiological processes, and form the moist part of the body. In Kāmil aṣ-Ṣinā'ah aṭ-Ṭibbiya (Complete Book on Art of Medicine) authored by 'Alī Ibn 'Abbās Majūsī (Haly

Abbas, 930-994 AD), *Ustuqus* is defined as the smallest part of a substance which is indivisible. Hence, it is interpreted as 'element'. Therefore, *ruṭūbāt usṭuqussiyya* or *ruṭūbāt-i-gharīziyya* actually refers to the fluids present in tissues and organs (Majūsī 1889a). According to Ibn Sīnā (Avicenna, 980-1037 AD), the innate fluids afford protection to the innate heat, and a progressive attenuation of body moisture is responsible for senescence (Abu-Asab et al. 2013).

It is also postulated that the innate fluids decrease progressively with age, with progressive decline in innate fluids. With the decrease in innate fluids and innate heat, there is occurrence of pathological fluids and abnormal heat which are termed as *ruṭubāt-i-gharība* and *ḥarārat-i-gharība*, respectively. These abnormal fluids and heat give rise to abnormal reactions in the body, termed as *Iḥṭirāq* (combustion), which produces abnormal humors, causes combustion of normal humors, and gives rise to diseases (Kausar et al. 2021). They also play a significant role in decline of health and eventual death.

The above paragraphs describe the concepts of USM regarding the causation of senescence and death. Philosophically, the interpretation and explanation of innate heat, pneuma, fluids, innate temperament in USM differ from the interpretation of aging changes decline functional in contemporary medicine. To bring both systems on the same platform, there have been efforts to identify aging-related biochemical markers and processes which may explain the concepts described in traditional Islamic medicine. Hence, we hereby make an attempt to correlate the Unani concepts with modern understanding.

In the present era, *ḥarārat-i-gharīziyya* is interpreted as the heat generated by mitochondrial action, which manifests as Basal Metabolic Rate (BMR). While the *ruṭūbāt-i-gharīziyya* are interpreted as intracellular and extracellular fluids (Kausar et al. 2021). The justification for

this is that normal cellular metabolism generates energy in the form of ATP (adenosine triphosphate), by progressive oxidation of nutrient-sourced atoms. The exchange and uptake of nutrients across the cell membrane is dependent on the extracellular and intracellular fluids to support various pathways (Pavlova et al. 2022). This is similar to the concept of USM in which, it is stated that innate heat is generated within the body by fortification from inspired air (containing oxygen), and is maintained by fluids of the body. It is also estimated that the total body volume of fluids reduces to 45% of body weight in elderly as compared to nearly 65% in adult age. In comparison, the total body water in infants and children is 65-80% of their weight (Vega and Avva 2019). This reduction of fluid volume is analogous to the concept of age-related diminution of rutubāt-i-gharīziyya (innate fluids) in USM.

This is also supported by the concept of ruţubāt-i-gharība (abnormal fluids) and harārat-i-gharība (external/ abnormal heat). It is observed that some factors like dietary imbalance, high BMI (body mass index), tobacco smoking, and physical inactivity, etc. contribute to the generation of free radicals leading to oxidative stress (an exothermic process), which is parallel to the concept of harārat-i-gharība. A high BMI, exposure to pollutants, smoking, stress, etc. are strongly associated with high oxidative stress and biomarkers of DNA damage. These conditions cause the generation abnormal constituents in body fluids, e.g. reactive oxygen species, inflammatory cells, etc. (akin to the concept of rutubāt-i-gharība) which degrade the cell environment (Shammas 2011; Kausar et al. 2021). Hence, it is accepted that as long as cellular metabolism is maintained at an optimum level to prevent cellular degradation, apoptosis, and generation of free radicals, it would prevent the generation of 'heat of catabolism', and maintain health, in alignment with USM

concepts of health and aging (Kausar et al. 2021).

A comparative representation of the Islamic traditional medicine and

conventional concepts of aging is presented in Figure 1.

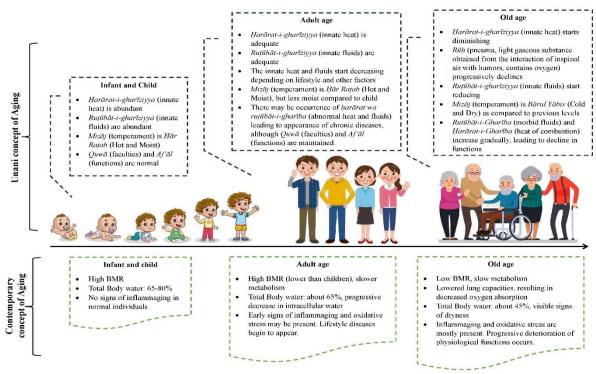


Figure 1. Comparative representation of the concepts of aging in Islamic traditional and contemporary medicine

Lifestyle and regimenal guidelines for geriatric health-preservation in ITM:

According to Islamic philosopherphysician Jurjānī, the harārat-i-gharīziyya (innate heat) and rutūbāt-i-gharīziyya (innate moisture) decrease progressively with advancing age and the mizāj (temperament) in old age is *bārid* (cold) and yābis (dry). He states that the rapidity and extent of this change in temperament varies previous temperament, with beneficial and detrimental regime followed over time, psychological health, diseases, and occupation (Jurjānī 1878). In principle, the geriatric care in ITM is concerned with preserving of the innate heat and innate moisture, and avoiding the factors (both internal and external) which cause them to diminish. Besides, it is imperative to protect from factors which cause the generation of harārat-i-gharība (abnormal heat), rutūbāt-i-gharība moisture/ (abnormal

fluids), and diminution of $r\bar{u}h$ (pneuma, vital spirit) (Gruner 1973).

General guidelines:

Ibn Sīnā has enumerated the following tenets for health-maintenance in old age- (i) tarṭīb (producing moistness) and taskhīn (calefaction), (ii) increase sleep and rest, (iii) age-and health-appropriate diet, (iv) regular use of diuretics and laxatives to expel balgham (phlegmatic humor) through bladder and intestine, (v) softening the bowel movements, (vi) moderate massage with oils should be done followed by walking or riding, and (vii) use of perfumes which are warm in temperament (Ibn Sinā 1879).

Ghidhā (Diet): According to Moḥammad ibn Zakariyā Rāzī (Rhazes, 865-925 AD), the elderly should be given a healthy, easily digestible diet, and palatable diet (Razi 1991), which is hār raṭab (hot moist) in temperament (Baghdādī 2005). It is preferred to give small frequent meals

keeping in mind their weak digestion. Also, which produce the foods sawda (melancholic humor, cold-dry temperament) or balgham (phlegmatic humor, cold-wet temperament) should be avoided. Such as brinjal, roasted meat, or meat of animal killed by hunting. Milk is considered beneficial, unless it causes abdominal pain (Ibn Sinā 1879) or flatulence (Jurjānī 1878). According to Ibn Rushd (Averroes, 1126-1198 AD), milk should also be avoided if a person has thin/ constricted veins or inherent temperament (Rushd 1987). Wheat, olive oil, beetroot, bathua (Chenopodium album L. greens), spinach, fig, oxymel, and honey etc. are preferred as diet as they are easily digestible, nutritive, and prevent constipation (Majūsī 1889b; Nikhat and Fazil 2022). Nabīdh (fermented drink) made with de-seeded mawīz (Vitis vinifera L. fruit) (Rushd 1987), plum, and murabba zanjabīl (preserve of Zingiber officinale Roscoe. rhizome) are also recommended in classical literature of ITM (Ibn Sinā 1879).

Daily regime: It is recommended by Avicenna that the elderly should bath seven hours after sunrise, so that the temperature is moderate (Ibn Sinā 1879). After bath, dalk (massage) with aromatic oils such as Roghan-i-Nargis (Narcissus tazetta L. oil), Roghan-i-Sawsan (Iris ensata Thunb. oil), and Roghan-i-'Anbar (ambergris oil) is recommended (Jurjānī 1878). The duration and frequency of massage should be decided according to individual needs. Massage is effective in preventing nervine diseases. Hammām (Turkish combined with massage is also beneficial to expel morbid substances, and is preferable over heavy physical activity. Moderate exercises should be prescribed according to general health. In ITM, physical activity is considered vital for maintaining healthy physiology. Hence even if an organ is diseased, it is recommended individualized exercise regimen may be devised (Ibn Sinā 1879). Since the elderly have a lower resting energy expenditure, and slower clearance of morbid matter,

prophylactic use of diuretics (e.g. oxymel, fresh fennel, and *Apium graveolens* L. seed), laxatives e.g. (*Pistacia atlantica* Desf. resin), and *mufatteḥ-i-sudad* (deobstruent) medicines (e.g. *Piper nigrum* L., onion, and garlic) is prescribed at suitable intervals (Jurjānī 1878; Ibn Sinā 1879; Majūsī 1889b).

Mufatteḥ-i-Sudad (De-obstruent) measures: In ITM, a concept of sudad (obstruction), which is explained as any physical entity or abnormality that prevents physiological functions, or hampers the production of normal humors. Examples of physical obstruction atherosclerosis, mucus plug in respiratory tract, constipation, calculi, etc. Factors such as slow metabolism, reduced vital capacity of lungs, and slow metabolism, etc. may also be considered *sudad* (obstruction) as impede physiological functions (Jurjānī 1878; Ibn Sinā 1879; Tahseen et al. 2024). Since the elderly have a lower resting energy expenditure, and slower clearance of morbid matter, there is a higher chance of developing such obstructions which lead to further complications (Bautmans et al. 2022). Hence, it is recommended that prophylactic use of deobstruent medicinal foods should be done on a regular basis.

Geroprotective activity of Islamic traditional medicine

The terms geroprotective and senoprotective are used interchangeably in medical literature. Conceptually, the term 'geroprotective' includes those agents which protect against the effects of effects of aging and delay the onset of age-related diseases (Rivero-Segura et al. 2024). While 'senoprotective' refers to the agents which act on senescent cells to prevent further deterioration (Boulestreau et al. 2024). In Table 1, we present the details of some Ghidha-i-dawā'ī (medicinal foods) and medicines which are prescribed under elderly care guidelines in classical Islamic traditional medicine textbooks as health preservative.

Table 1. Islamic traditional medicines recommended as anti-aging/ health-preservative in old age

Herb/ Drug	Functions described in Unani classical books	Research related to anti-aging/ senoprotective activity of the drug			
		Study design	Active ingredients responsible for the activity	Key findings	
Ajwā'in (Trachyspermum ammi Sprague seeds, Apiaceae)	Expels morbid matter through diuresis (Rushd 1987), <i>mulattif</i> (attenuant) of morbid matter, de-obstruent, beneficial for respiratory and digestive tract (Ibn Sinā 1879)	RCT-P, n =98 patients on mechanical ventilation, 10 ml T . $ammi$ syrup thrice a day \times 10 days vs . placebo	Thymol and carvacrol	Test group had 72% lesser chance of developing ventilator-associated pneumonia (Ahmadipour et al. 2024)	
Akhrot (Juglans regia L. kernel, Juglandaceae)	Laxative, promotes health in old age (Rushd 1987)	RCT, cognitively healthy elderly (63-79 years). <i>n</i> =149 <i>Groups</i> : (i) Walnut group (15% of total energy intake) (ii) Control group-normal diet, abstaining from walnuts <i>Duration</i> : 2 years	Alpha-linolenic acid (precursor to <i>n</i> -3 polyunsaturated fatty acid)	Delayed telomere shortening (p=0.079) (Freitas-Simoes et al. 2018)	
Ālū Bukhārā (Prunus domestica L. fruit, Rosaceae)	Beneficial as diet in summers (Ibn Sinā 1879), relieves itching and uneasiness caused by heat, relieves nausea, expels <i>şafrā</i> (bilious humor) by laxative action (Ibn Baytār 1985)	Animal models of D-galactose-induced aging with dried plum as diet (10%) \times 8 weeks	Polyphenols	↑Nrf2-involved antioxidant capacities, ↓Nf-κB activation through the PI3K/Akt pathway, ↓oxidative stress markers, anti-aging (Jeong et al. 2017)	
Āmla (Phyllanthus emblica L. fruit, Phyllanthaceae)	Improves longevity, ↑cardiac health, ↑cognition, beneficial for nerves, eyes, stomach, and hair; ↓melancholic disorders (Ḥarawī 2007)	RCT-P, double blind, <i>n</i> =167 males (116 aged 45-60 years, 51 aged 22-30 years), DNA damage induced with UV-C in mononuclear cells (0.5 and 1 J/cm²) Test drug: Amalaki Rasayana (an Ayurvedic preparation made with <i>Amla</i> fruit, clarified butter, and honey) Dose: 45 g/day on empty stomach Duration: 90 days	Ellagic Acid, Gallic Acid, Vitamin C, flavonoids, and tannins (emblicanin A&B)	↑DNA strand repair capacity, ↓UV-induced DNA strand break in older subjects. No adverse effects (Vishwanatha et al. 2016)	
Angūr (Vitis vinifera L. fresh fruit, Vitaceae)	Beneficial as diet (Baghdādī 2005), nutritive, laxative (Ibn Sinā 1879)	RCT-P double-blind, elderly patients of cognitive decline (mean age 72.2 ± 4.7 years), $n=10$ <i>Intervention</i> : active grape formulation 72 g/day vs. placebo (polyphenol-free) \times 6 months	Polyphenols	Decreased age-related metabolic decline in brain areas related to aging (anterior cingulate, (posterior cingulate and superoposterior temporal cortex) (Lee et al. 2017)	
Anjīr (Ficus carica L. fruit, Moraceae)	Expels morbid matter by laxative action (Rushd 1987), anti-inflammatory, relieved feeling of heat, beneficial in chronic lung diseases (Ibn Baytar 1985)	Transgenic mice model of Alzheimer's Disease (n =18) Intervention: Fig powder (4% of diet) vs . placebo \times 15 months	Quercetin, proanthocyanidins, minerals (copper, iron, manganese, calcium) and vitamin K	Improved cognitive and motor skills, ↓anxiety, ↑learning ability (Subash et al. 2016)	
'Asal (Honey)	Laxative, general tonic (Ibn Sinā 1879; Rushd 1987)	RCT, n =37, 18-54 years healthy volunteers $Dose$: buckwheat honey, 1.5 g/kg body weight per day, containing 0.79 ± 0.02 and 1.71 ± 0.21 mg of phenolic antioxidants per gram in low and high antioxidant honey respectively)	Phenolics, monophenolics (4-hydroxybenzoic, 4-hydroxycinnamic acids) and flavonoids	↓Oxidative stress, ↑plasma reducing capacity in high-antioxidant honey group (Schramm et al. 2003)	
Bādām (Prunus amygdalus Bastch kernel, Rosaceae)	Beneficial as diet (Majūsī 1889b), nutritive, de-obstruent (Ibn Bayṭār 2003)	RCT, obese (BMI 25–39.9 kg/m²) adults, mean age 50-80 years, n =124 <i>Intervention</i> : Almond enriched diet (15% of total energy intake) vs . nut-free diet 6 days/week × 12 weeks	Mono-unsaturated fatty acids, fibre, vitamin E, and flavonoids	Trivial lengthening of telomeres in neutrophils at 12 weeks (Ward et al. 2022)	
Bādranjboya (Melissa officinalis L., Lamiaceae)	Strengthens innate heat, exhilarant, de- obstruent of brain, beneficial for all organs (Ḥarawī 2007)	RCT-P, double blind, n=23 patients of mild dementia Intervention: 500 mg/day M. officinalis extract × 48 weeks	Rosmarinic Acid	Delayed progression of Alzheimer's Disease- related neuropsychiatric symptoms (Noguchi- Shinohara et al. 2020)	
Chuqandar, Silq (Beta vulgaris L., Amaranthaceae)	Expels morbid matter by laxative action (Rushd 1987), laxative, attenuant, anti-inflammatory, de-obstruent for liver and spleen (Ibn Sinā 1879)	Healthy adults (n =13 aged 18-30 years, n =11 aged 50-70 years), RCT-P, double blind, cross-over <i>Intervention</i> : Nitrate-rich fresh beetroot juice 150 ml \times 3 visits	Nitrates	↑plasma nitrite, ↓systolic and diastolic blood pressure, improved cardiovascular parameters, particularly in older participants, ↑cognition (Stanaway et al. 2019)	

Nikhat et al.

TD 11 1	
Table	continued
I auto I	 Commune

Table 1. Continued				
Filfil (Piper nigrum L. fruit, Piperaceae)	De-obstruent, may be used in moderation as diet, clears morbid matter from chest, relieves splenitis, improves appetite, analgesic (Ibn Sinā 1879)	Animal models of anxiety, <i>n</i> =228 Intervention: <i>P. nigrum</i> essential oil 5, 10, and 50 mg/kg vs. standard drugs Duration: 21 days	Limonene, sabinene, and caryophyllene	Anxiolytic, antidepressant, ↓total cholesterol, no adverse effects (Ghosh et al. 2021)
Gandum (Triticum aestivum L., Poaceae)	Beneficial as diet (Jurjānī 1878), useful in lung diseases (Ibn Sinā 1879)	RCT, single-blind, overweight adults (BMI 25-30 kg/m 2 , 18-45 years), n =40 Intervention: wheat germ 30g vs. control (cornmeal) daily \times 4 weeks	Vitamin B, phytosterols, tocopherols, policosanols, and polyphenols	Maintenance of gut microbiota (Faecalibacterium) Improved glucose homeostasis, improved fasting insulin, HOMA-IR, and HBA1c (Dotimas et al. 2024)
<i>Īrsā (Iris ensata</i> Thunb. root, Iridaceae)	Protects innate heat, cardiotonic (Ḥarawī 2007)	In vitro: I. ensata root. Extract prepared in 80% methanol	Hydroalcoholic extract, <i>n</i> -butanol fraction (containing flavonoids and phenolic acids such as ferulic acid, <i>p</i> -coumaric acid, vanillic acid, isovitexin, isomagniferin etc.)	Antioxidant, anti-bacterial (Rao et al. 2023)
Kāhū, Khas (Lactuca sativa L. leaves, Asteraceae)	Beneficial as diet (Baghdādī 2005), improves sleep, diuretic, produces healthy humors, relieves dysuria (Ibn Bayṭār 1986)	Mice inoculated with multiple myeloma cells <i>Intervention:</i> Cucurbitacin B 0.1 mg/kg, $i.p.$, thrice a week \times 4 weeks	Cucurbitacin B (triterpenoid)	Arrested growth cycle of multiple myeloma cells, inhibition of tumor growth by multiple pathways, no host toxicity (Yang et al. 2017)(Yang et al., 2017)
Karnab (Brassica oleracea L. aerial parts, Brassicaceae)	Relieves constipation (Ibn Sinā 1879), promotes wound healing, relieves urticaria, analgesic, improves complexion (Ibn Baytār 2003)	Animal study, high-fat diet obese mice Intervention: Broccoli flour-supplemented diet \times 4 weeks	Glucosinolates (glycolyzed into isothiocyanates)	↓Body weight, ↓liver weight, ↓fat accumulation, ↓adipocyte size and volume (Martins et al. 2022)
Kāsnī, Hindbā (Cichorium intybus L. aerial parts, Asteraceae)	Beneficial as diet (Baghdādī 2005), stomachic, cardiotonic, relieves palpitation, de-obstruent for liver and spleen (Ibn Baytār 2003)	RCT-P, cross-over, single -blind, <i>n</i> =32, untrained healthy individuals, 18-45 years (BMI 18.5–23.9 kg/m²) <i>Intervention</i> : 100g fresh chicory juice <i>vs.</i> placebo × 7 days	Phenolic acids	Improved exercise performance, ↓exhaustion, ↑post-exercise recovery (Mao et al. 2025)
Khubbāzī (Malva sylvestris L., Malvaceae)	Expels morbid matter through diuresis (Rushd 1987), anti-inflammatory, relieves dryness of chest (Ibn Baytār 1986)	Animal study, <i>n</i> =45 mice pretreated with <i>M. sylvestris</i> flower extract 200, 400, and 600 mg/kg × 1 week, followed by concurrent 6Gy radiation × 10 days	Flavonoids, Vitamins C, E, β-carotene, enzymes (sulfite oxidase, catalase), essential fatty acids	Radioprotective effect on liver, kidney, and intestines by antioxidant and radical scavenging activity (Azmoonfar et al. 2023)
Lablāb (Lablab purpureus (L.) Sweet, Fabaceae)	Relieves constipation, anti-inflammatory, attenuant, beneficial for lungs and liver (Ibn Sinā 1879)	In vitro: HaCaT cells exposed to Ultraviolet B radiation, pre- treated with L. purpureus extract	Gallic acid, epicatechin, and catechin	↓Oxidative stress, prevention of DNA damage, no toxicity (Diniyah et al. 2020)
Nakhūd (Cicer arietinum L. kernel, Fabaceae)	Beneficial as diet (Majūsī 1889b)	 (i) Acute study (n=19, age < 70 years, healthy participants, randomized), Intervention: meals of chickpea, wheat, or bread × 2 weeks (ii) Long-term study (n=19, randomized cross-over trial), Intervention: chickpea or wheat-based food × 6 weeks each 	Fiber	↓Plasma glucose, ↓plasma insulin, no change in insulin sensitivity (Nestel et al. 2004)
Nārdīn (Nardostachys jatamansi (D.Don) DC., Caprifolaceae)	Anxiolytic, sedative, tranquilizing, anti- hypertensive (Bhat and Malik 2020)	RCT-P, single-blind, <i>n</i> =40, 35-70 years, patients of stage-I hypertension <i>Intervention: N. jatamansi</i> powder 3 g/day in 3 divided doses <i>vs.</i> placebo × 4 weeks	Sesquiterpene (jatamansone), flavonoids, and polyphenols	Significant reduction in systolic and diastolic blood pressure as compared to placebo group (p<0.001), no adverse effects (Bhat and Malik 2020)
Pālak, Isfānākh (Spinacia oleracea L. aerial parts, Amaranthaceae)	Beneficial as diet (Baghdādi 2005), easily digestible, nutritive, laxative, anti-inflammatory, expels morbid matter from lungs (Ibn Bayṭār 1985)	RCT-P, double-blind, <i>n</i> =45 healthy adults, 50-75 years (men and post-menopausal women), BMI < 32 kg/m ² <i>Intervention:</i> capsules of <i>S. oleracea</i> aqueous extract <i>vs.</i> placebo <i>Dose:</i> 2 g/day in 4 divided doses × 12 weeks	Nitrates, amino acid derivatives (pipecolic acid)	Improved muscle strength, range of movement in knee joint, no adverse events (Pérez-Piñero et al. 2021)

Table 1. continued

Parsiāoshā <u>n</u> (Adiantum capillus-veneris L., Pteridaceae)	De-obstruent of respiratory tract (Jurjānī 1878; Ibn Sinā 1879)	Animal study, <i>n</i> =20 healthy wistar rats exposed to 3-week hypoxia and high-intensity exercise	Flavonoids, phenolics, and terpenoids	Antioxidant, improvement in respiratory surface damage caused by chronic hypoxia,
		Intervention: A. capillus-veneris extract 500 ml/ kg weight daily after 3 weeks of hypoxia		↓inflammatory and apoptotic activity (Yadegari et al. 2019)
Rāzyānaj (Foeniculum vulgare	Expels morbid matter through diuresis (Majūsī	In vitro and in vivo: normal human dermal fibroblasts	Chlorogenic acid, ferulic acid, and	↑Collagen, elastin, and antioxidants;
Mill., fresh seeds, Apiaceae)	1889b), de-obstruent, relieves gastritis and chronic fevers (Ibn Sinā 1879)	Intervention: F. vulgare seeds ethyl alcohol extract 0.1% and 1% (concurrent with Ultraviolet B exposure), oral use in animals	rutin	↓phosphorylation of extracellular signal- regulated kinase (Sun et al. 2016)
Roghan-i-Zaytūn (Olea	Laxative, nervine tonic (IH 2004), analgesic,	RCT, prospective, $n=1002$, patients of coronary heart	Vitamin E	Protection against shortening of leukocyte
europaea L. oil, Oleaceae)	anti-aging (Baghdādī 2005; Ibn Sinā 1879)	disease, age 20-75 years		telomere length, ↓oxidative stress, ↓cellular
		Intervention: Mediterranean diet (with 30 g Olive oil/ day) vs. low-fat diet		senescence (Cicero et al. 2008)
Sīr (Allium sativum L. bulb,	De-obstruent, may be used in moderation as	RCT-P, triple-blind, <i>n</i> =77 patients of grade-I hypertension	S-allyl-cysteine	↓Blood pressure, ↑blood nitric oxide,
Amaryllidaceae)	diet (Ibn Sinā 1879)	Intervention: Extract of aged A. sativum extract 250 mg/day (containing s-allyl-cysteine 0.25 mg) vs. placebo × 12 weeks		↑antioxidant activity, ↓uric acid (Serrano et al. 2023)
Tukhm-i-Karafs (Apium	Expels morbid matter through diuresis (Rushd	RCT-P, double-blind, <i>n</i> =36 patients of diabetes mellitus	Luteolin and apigenin	↓Body fat percentage, ↑insulin,
graveolens L. seeds, Apiaceae)	1987), stomachic, anti-flatulent, de-obstruent	type-2	Euteoini una upigenini	malondialdehyde (Mohsenpour et al. 2023)
, 1	for liver and spleen, relieves shortness of	Intervention: Fresh celery powder 750 mg/day vs. placebo ×		, , , , , ,
	breath (Ibn Bayṭār 2003)	12 weeks		
Tukhm-i-Qurtum (Carthamus	Expels morbid matter by laxative action	RCT-P, <i>n</i> =67 patients of metabolic syndrome, 30-65 years,	Phenolic compounds and	↓Abdominal obesity, blood pressure, liver
tinctorius L. seeds, Asteraceae)	(Majūsī 1889b; Rushd 1987) clears chest,	BMI $\geq 25 \text{ kg/m}^2$	polyphenols	enzymes, ↓insulin resistance (Ruyvaran et al.
	laxative (Ibn Sinā 1879)	Intervention: C. tinctorius seed oil 8g/day vs. placebo × 12 weeks		2022)
Turanjabīn (Alhagi maurorum	Laxative (Baghdādī 2005), improves memory,	Animal models of lead toxicity, $n=40$	3-methyl-2-(2-oxopropyl) furan,	Reversal of lead-induced hepatoxicity,
Medik. exudate, Fabaceae)	relieves thirst and burning sensation in acute	Intervention: A. maurorum ethanol extract 300 mg/kg with	flavonoids, and phenols	neurotoxicity; antioxidant, restoration of brain
	fevers (Ibn Bayṭār 1985)	concurrent lead acetate 100 mg/kg \times 3 months		dopamine level, anti-apoptotic in liver and brain
Zanjabīl (Zingiber officinale	$Murabb\bar{a}$ (preserve) of the rhizome may be	RCT-P, double-blind, patients of diabetes mellitus type-2,	Gingerols (6-gingerol, 10-	(Saber et al. 2022) ↓Fasting blood sugar, total cholesterol and
Roscoe rhizome, Zingiberaceae)	used as diet in moderate amount (Jurjānī 1878)	20-80 years, HbA1c 6-10%, on oral hypoglycemics	gingerol, 6-shogaol)	insulin resistance (Carvalho et al. 2020)
	(.	Intervention: Z. officinale rhizome powder 1.2g /day vs.	88	
		placebo × 90 days		
Zūfā (Hyssopus officinalis L.,	De-obstruent of respiratory tract (Jurjānī 1878;	Asthmatic mice, $n=32$	Aqueous extract	↓Immunoglobulin G and E, ↓eosinophils in
Lamiaceae)	Ibn Sinā 1879)	Intervention: H. officinalis aqueous extract 0.04 g/10 g once		bronchoalveolar lavage fluid, anti-
		a day × 8 days		inflammatory and antioxidant (Ma et al. 2014)

Discussion

Related supporting research on Islamic traditional medicine for common geriatric problems

In Table 2, we present important findings from some clinical research studies conducted on Islamic traditional medicines in common geriatric conditions. In this section, we included those studies which were either conducted exclusively on geriatric patients, or those which included patients from the geriatric age-group. From the results of these studies, it is evident that Islamic traditional medicines were effective against various age-related conditions such hypertension, diabetes, irritable bowel syndrome, and many others. No adverse effects were reported in any of the studies.

Research areas to be explored further

There is a plethora of information regarding aging changes, and an even larger number of researches on various measures which may potentially prevent or delay aging changes. In this context, the measures for geriatric care described in ITM are simple, practically applicable, and gentle on the individual. However, some fundamental concepts may be explored further to shed deeper insights into the unique concepts of ITM:

The concept of rūh

The concept of $r\bar{u}h$ (pneuma) in ITM states that $r\bar{u}h$ is the gaseous substance which is formed when inspired air interacts with tissue environment, and hence, it is unique for each organ (Ibn Sinā, 1879). The parallel concept in conventional medicine includes oxygen and other gases which make up the tissue environment and are necessary for their viability. It is also established that any disruption in the tissue environment can cause cell damage and death by altering permeability of cells, disruption of homeostasis, and several other mechanisms (Mirchandani et al. 2024), which are implicated in the aging process. In this context, several drugs have been

described in ITM which can fortify the $r\bar{u}h$. For instance, it is mentioned by Ibn al-Baytār (1197-1248 AD) that $M\bar{u}mi\bar{a}$ ($Sal\bar{a}j\bar{t}t$, Asphaltum, mineral pitch) can strengthen the $r\bar{u}h$ (Ibn Baytār 2003). However, there is a lack of research on its role as anti-aging and in elderly care. Besides, the mechanism and extent to which the fortification of $r\bar{u}h$ can help in retarding the progression of aging is yet to be understood empirically. Hence, the exploration of this concept can provide fresh insights to geriatric studies.

The concept of harārat-i-gharīziyya (innate heat) and ruṭubat-i-gharīziyya (innate fluids)

The concept of innate heat and innate fluids is also one of the fundamentally-important concepts in ITM, which forms the foundation of the whole process of aging. It is explained that the innate fluids (which encompasses all fluids of the body, including inter- and intracellular fluids) preserve the innate heat, which is responsible for life. The innate heat, in turn, is dependent on $r\bar{u}h$ for its fortification. Many Unani drugs have been described which protect the innate fluids, and prevent the build-up of morbid substances, thereby preventing the generation of abnormal fluids and abnormal heat. For instance, Sakbīnaj (Ferula persica Willd., Apiaceae) (Ibn Baytār 1999) and Musk (Ibn Baytār 2003) are described as drugs which strengthen the innate heat. Although the anti-microbial, anti-cancer, and antiinflammatory activity of F. persica has been studied on scientific lines (Sattar and Iranshahi 2017), the gero-protective activity has not been explored. From the Unani standpoint, if any medicine can maintain an ideal level of innate heat and fluids, it may be able to mitigate nearly all adverse effects of aging including aging itself (Nikhat and Fazil 2024). Hence, it is a feasible and interesting area of research in geriatric care.

Table 2. Clinical studies on Islamic traditional medicine and therapies against common geriatric problems

Disease/ Condition under study	Study design	Study sample	Intervention	Main results	Reference
Immuno-compromized subjects	RCT-P, double blind	$n=30$, age ≥ 60 years	Tiryāq-i-Wabā 'ī [Composition: Şibr (Aloe barbadensis), Za 'frān (Crocus sativus), Mur (Commiphora myrrh), ratio 2:1:1] Dose: 500 mg thrice a day vs. same dose of placebo (roasted wheat flour) Duration: 45 days	Increased TLC, ALC, CD4 (p < 0.001), CD8 count	(Nigar and Itrat 2013)
Healthy elderly volunteers for cognition and memory	RCT-P, double blind	n=40, mean age 55.8 ± 0.57 years (Group-A), 55.9 ± 0.65 years (Group B)	Shownīz (Nigella sativa L. seed) powder 500 mg b.i.d. vs. placebo (Psyllium seed husk) Duration: 9 weeks	$\label{eq:local_local} Improvement in logical memory, Rey- \\ Osterrieth complex figure test, recall, Stroop \\ test (p < 0.05)$	(Bin Sayeed et al. 2013)
Dyslipidemia	RCT-S	n=40, 30-60 years	Ma'jūn Sīr 'Alwī Khān (a Unani pharmacopeial formulation) vs. Atorvastatin Duration: 60 days	Decreased lipid profile, improved quality of life	(Quamri et al. 2021)
Cardiovascular risk factors	RCT-S	n=40, 18-65 years	Arjun (Terminalia arjuna (Roxb. ex. DC.) Wight & Arn.) bark powder 5g b.i.d. vs. Amlodipine (5 mg) and Atorvastatin (10 mg) Duration: 8 weeks	Improvement in Lipid profile, BP, BMI in both groups (p<0.001), better toleration of test drug as compared to control drugs	(Saleem et al. 2022)
Hypertension Stage-II	RCT-S	<i>n</i> =60, 18-65 years	Hydroalcoholic extract (50%) of 5 Unani drugs [Asrol (Rauvolfia serpentina Benth. ex Kurz), Asgandh (Withania somnifera (L.) Dunal), Sankhāholī (Evolvulus alsinodes Kuntze), Parsiāoshān (Adiantum capillus-veneris L.), Filfīl siyāh (Piper nigrum L.)] 1100 mg daily in two divided doses vs. Telmesartan 40 mg once daily Duration: 3 weeks	Significant reduction of blood pressure (p-0.001), no adverse effects	(Siddiqui et al. 2024)
Hypertension	RCT-S	<i>n</i> =57, 18-60 years	Sankhāholī (Evolvulus alsinoides L.) hydroalcoholic extract, 630 mg daily vs. Ramipril 5 mg once daily Duration: 6 weeks	Reduced blood pressure; significant decrease in inflammatory markers of primary hypertension (hsCRP, IL-6), as compared to standard drugs	(Binth Siraj et al. 2024)
Essential Hypertension (Stage-I)	RCT-P	<i>n</i> =40, 35-70 years	Nārdīn (Nardostachys jatamansi (D.Don) DC) root powder 1g thrice daily vs. placebo (roasted wheat flour) Duration: 4 weeks	Reduction in blood pressure as compared to control group (p<0.001)	(Bhat and Malik 2020)
Diabetes Mellitus Type-2, , HbA1c > 6.5	RCT-P	<i>n</i> =40, age 35-65 years	Pakhānbaid (Bergenia pacumbis (BuchHam. ex D.Don) C.Y.Wu & J.T.Pan) 4g per day vs. placebo Duration: 8 weeks	Decrease in blood sugar and glycated haemoglobin, improved quality of life, no adverse effects	(Nizamudeen et al. 2024)
Post-stroke depression	RCT-P, double blind	$n=39$, mean age 49.15 ± 8.29 (test group), 49.26 ± 13.32 (control group)	Nārdīn (Nardostachys jatamansi (D.Don) powder 3g per day vs. placebo (roasted wheat powder) Duration: 6 weeks	Reduction in Hamilton Depression Rating Scale (HDRS ₁₇) score (p < 0.001)	(Bhat and Ahmad 2023)
Anorexia	SA-OLCT	n=95, 19-65 years	Habb-i-Hiltīt [Composition: Zanjabīl (Zingiber officinale Roscoe), Ḥiltīt (Ferula foetida Regel), Tankār (Borax), Namak-i-Sang (Rock salt), 500 mg b.i.d.	Improved appetite, increased body weight, no adverse effects	(Anwar et al. 2022)
Dyspepsia	SA-OLCT	n=95, 18-50 years	Duration: 14 days Sufūf-i-Tabkhīr [Composition: Bādiyān (Foeniculum vulgare Mill.), Kishnīz (Coriandrum sativum L.), Tabāshīr (Bambusa bambos (L.) Voss), Hīl Khurd (Elettaria cardamomum (L.) Maton)] 6 g + Arq-i-bādiyān (Foeniculum vulgare Mill. distillate) 60 ml, b.i.d. Duration: 28 days	Decreased epigastric pain, heartburn, and postprandial fullness (p < 0.001)	(Mobeen and Hakeem 2023)
Knee osteoarthritis	Parallel group RCT	n =60, mean age: 51.53 \pm 1.658 years (test group), 53.27 \pm 1.981 years (control group)	Test group: application of 2 leeches on the knee joint every week once a week + Qurş Mafāşil Jadīd [Composition: Sūranjān Talkh (Colchicum luteum) 25g, Chob zard (Curcuma longa) 25g, Gond Kīkar (Acacia arabica) 5g] 500 mg b.i.d. Control group: Qurş Mafāşil Jadīd Duration: 28 days	Decreased pain, swelling, improved range of motion, decreased CRP and ESR in test group (p $<0.0001)$	(Shiffa et al. 2013)
Knee osteoarthritis	RCT	<i>n</i> =40, 30-65 years	Dalk-i-Layyin Kathīr (soft and prolonged massage) with Roghan-i-Bābūna (Matricaria chamomilla L. oil) vs. Ḥijāma bilā Sharṭ (dry cupping), alternate day for 15 minutes Duration: 20 days	$Improvement\ in\ both\ groups\ (p<0.001),\ no\ significant\ inter-group\ difference\ (p>0.05)$	(Islam et al. 2021)

The concept of sudad (obstruction) and de-obstruent drugs

The concept of *sudad* (obstructions) is also a clinically-relevant and important topic of research. Apart from physical obstructions atherosclerosis, etc., like calculi, slowing-down of processes is considered a type of obstruction in ITM. Therefore, prophylactic de-obstruent measures are given utmost importance in health preservation of elderly (Jurjānī 1878; Nikhat and Fazil 2023). In conventional researches, it is observed that there is a gradual deterioration and slowing-down of physiological processes with age. For mitochondrial instance. dysfunction, altered intercellular communication (Keshavarz et al. 2023), slow motorneuron discharge rates (Orssatto et al. 2022), immune dysfunction, (Sharma Goodwin 2006), and suppression of fatty oxidation oxidative acid and phosphorylation (Elmansi and Miller 2024), all of which are being explored as potential targets of anti-aging therapies. In ITM, many drugs described as having deobstruent action have demonstrated antiaging activity in scientific studies (Table-1). Hence, the de-obstruent measures in USM ought to be explored further.

Aging is a physiologically-orchestrated phenomenon characteristically associated with a gradual decline in physiological functions. It is imperative to understand that aging (the process of getting older, which starts from birth) is different from (process somatic senescence ofdeterioration at older age). Aging is inevitable. but senescence complications can be controlled (Wick et al. 2000). In the classical literature of ITM, strong emphasis has been placed on two measures which have the potential to delay the unwanted effects of aging. First, to keep the body free of morbid substances, including preventing an excess build-up of normal nutrients. Second, to prevent deterioration of the innate heat and innate fluids (Majūsī 1889a). In the current biomedical understanding, this translates to

keeping the body free of pathological substances and over-nutrition; along with maintenance of normal metabolism and adequate tissue hydration for normal functioning of all systems. If observed closely, these factors occupy central importance in nearly all pathways which lead to progressive deterioration physiological functions (Wick et al. 2000). Hence, with further researches, application of Unani Tadābīr-i-Mashā'ikh (elderly care measures) can potentially provide a cost-effective method to delay and mitigate the adverse effects of senescence.

Acknowledgment

We would like to express our gratitude to the authors who shared the information/ full text of their papers on our request, which helped in a comprehensive review.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Funding

No funding was received for the work.

Ethical Considerations

Not applicable as this is a review article

Declaration

We have not used any AI tools or technologies to prepare this manuscript.

Author contributions

SN: Conceptualization, methodology, investigation, formal analysis, and drafting the manuscript; MF: Visualization, and writing - review & editing, supervision. Both authors read and approved the final manuscript.

Abbreviations

ALC: Absolute Lymphocyte Count; ATP: adenosine triphosphate; AYUSH: Ayurveda, Yoga, Unani, Siddha, and Homeopathy; b.i.d.: bis in die (twice a day); BPH: Benign Prostatic Hypertrophy; CD4:

cluster of differentiation 4; CRP: C-reactive proteins; DNA: Deoxyribose nucleic acid; ESR: Erythrocyte Sedimentation Rate; GSH-Px: glutathione peroxidase; HbA1c: haemoglobin; **HOMA-IR:** glycated Homeostatic Model Assessment of Insulin Resistance: ITM: Islamic **Traditional** medicine; MDA: Malondialdehyde; PAMRP: Pro-aging metabolic reprogramming; PGF: pomegranate flower; PPAR: Peroxisome proliferator-activated receptors; RCT: Randomized Controlled Trial; RCT-P: Randomized Placebo-Controlled Clinical Trial: RCT-S: Randomized Standard-Controlled Clinical Trial; SA-OLCT: Single-arm open-label clinical trial; SOD: superoxide dismutase; TLC: Total Leukocyte Count; USM: Unani System of Medicine

References

- Abu-Asab M, Amri H, Micozzi MS (2013) Avicenna's medicine: A New translation of the 11th-century Canon with practical applications for integrative health care. Healing Arts Press, Vermont
- Ahmadipour M, Razban F, Rashidipour N, Ahmadi F (2024) Effect of Trachyspermum ammi Syrup on the Prevention of Ventilator-Associated Pneumonia. J Herb Med 43:100818. https://doi.org/10.1016/j.hermed.2023.100 818
- Anwar N, Ahmed NZ, Begum S, et al (2022)
 Appetite-inducing effect and safety
 evaluation of Habb-e-Hilteet in patients
 with Du'f al-Ishtihā (anorexia): An open
 prospective clinical trial. J Drug Deliv
 Ther 12:38–43.
 https://doi.org/10.22270/jddt.v12i6.5788
- Azizi Z, Majlessi N, Choopani S, Naghdi N (2022) Neuroprotective effects of carvacrol against Alzheimer's disease and other neurodegenerative diseases: A review. Avicenna J Phytomedicine 12:357–370.
 - https://doi.org/10.22038/AJP.2022.19491
- Azmoonfar R, Khosravi H, Rafieemehr H, et al (2023) Radioprotective effect of Malva sylvestris L. against radiation-induced liver, kidney and intestine damages in rat:

- A histopathological study. Biochem Biophys Reports 34:101455. https://doi.org/10.1016/j.bbrep.2023.1014
- Baghdādī IH (2005) Kitāb al-Mukhtārāt fi aṭ-Tibb Part-2, 1st edn. Central Council for Research in Unani Medicine, New Delhi
- Bautmans I, Knoop V, Amuthavalli Thiyagarajan J, et al (2022) WHO working definition of vitality capacity for healthy longevity monitoring. Lancet Heal Longev 3:e789–e796.
 - https://doi.org/10.1016/S2666-7568(22)00200-8
- Bhat MDA, Ahmad H (2023) Efficacy of Nardostachys jatamansi (D.Don) DC in post stroke depression: A randomized, double blind, controlled trial. Brain Behav Immun Integr 2:100012. https://doi.org/10.1016/j.bbii.2023.10001
- Bhat MDA, Malik SA (2020) Efficacy of Nardostachys jatamansi (D.Don) DC in essential hypertension: A randomized controlled study. Complement Ther Med 53:102532.
 - https://doi.org/10.1016/j.ctim.2020.10253 2
- Bin Sayeed MS, Asaduzzaman M, Morshed H, et al (2013) The effect of Nigella sativa Linn. seed on memory, attention and cognition in healthy human volunteers. J Ethnopharmacol 148:780–786. https://doi.org/10.1016/j.jep.2013.05.004
- Binth Siraj M, Khan AA, Jahangir U, et al (2024) Evaluation of the efficacy of hydroalcoholic extract of Evolvulus alsinoides L. for the treatment of primary hypertension – A randomized controlled trial. J Ethnopharmacol 323:117661. https://doi.org/10.1016/j.jep.2023.117661
- Boulestreau J, Maumus M, Bertolino Minani G, et al (2024). Anti-aging effect of extracellular vesicles from mesenchymal stromal cells on senescence-induced chondrocytes in osteoarthritis. Aging 6:13252-13270. 10.18632/aging.206158
- Campisi J, Kapahi P, Lithgow GJ, et al (2019) From discoveries in ageing research to therapeutics for healthy ageing. Nature 571:183–192.
 - https://doi.org/10.1038/s41586-019-1365-2
- Carvalho GCN, Lira-Neto JCG, Araújo MFM de, et al (2020) Effectiveness of ginger in

- reducing metabolic levels in people with diabetes: a randomized clinical trial. Rev Lat Am Enfermagem 28:e3369. https://doi.org/10.1590/1518-8345.3870.3369
- Cicero AFG, Nascetti S, Nyyssönen K, et al (2008) Changes in LDL fatty acid composition as a response to olive oil treatment are inversely related to lipid oxidative damage: The EUROLIVE study. J Am Coll Nutr 27:314–320. https://doi.org/10.1080/07315724.2008.10 719705
- Diniyah N, Alam MB, Choi HJ, Lee SH (2020) Lablab purpureus protects hacat cells from oxidative stress-induced cell death through nrf2-mediated heme oxygenase-1 expression via the activation of p38 and erk1/2. Int J Mol Sci 21:1–16. https://doi.org/10.3390/ijms21228583
- Dotimas LG, Ojo B, Kaur A, et al (2024) Wheat germ supplementation has modest effects on gut health markers but improves glucose homeostasis markers in adults classified as overweight: A randomized controlled pilot study. Nutr Res 127:13–26.
 - https://doi.org/10.1016/j.nutres.2024.05.0
- Elmansi AM, Miller RA (2024) Oxidative phosphorylation and fatty acid oxidation in slow-aging mice. Free Radic Biol Med 224:246–255.
 - https://doi.org/10.1016/j.freeradbiomed.2 024.08.018
- Fernández-Blázquez MA, Seri T Del, Frades-Payo B, et al (2021) MADRID+90 study on factors associated with longevity: Study design and preliminary data. PLoS One 16:e0251796.
 - https://doi.org/10.1371/journal.pone.0251
- Freitas-Simoes TM, Cofán M, Blasco MA, et al (2018) Walnut consumption for two years and leukocyte telomere attrition in mediterranean elders: Results of a randomized controlled trial. Nutrients 10:. https://doi.org/10.3390/nu10121907
- Gheflati A, Pahlavani N, Nattagh-Eshtivani E, et al (2023) The effects of cinnamon supplementation on adipokines and appetite-regulating hormones: A systematic review of randomized clinical trials. Avicenna J Phytomedicine 13:463–474.

- https://doi.org/10.22038/AJP.2022.21538
- Ghosh S, Kumar A, Sachan N, Chandra P (2021) Anxiolytic and antidepressant-like effects of essential oil from the fruits of Piper nigrum Linn. (Black pepper) in mice: involvement of serotonergic but not GABAergic transmission system. Heliyon 7:e06884.
 - https://doi.org/10.1016/j.heliyon.2021.e06 884
- Gruner OC (1973) The Canon of Medicine (al Qānūn fi'l Tibb). AMS Press, London
- Ḥarawī MIY (2007) 'Ain al-Ḥayāt. Ibn Ibn Sinā Academy, Aligarh
- Hosseini M, Boskabady MH, Khazdair MR (2021) Neuroprotective effects of coriandrum sativum and its constituent, linalool: A review. Avicenna J Phytomedicine 11:436–450. https://doi.org/10.22038/AJP.2021.55681. 2786
- Ibn Baytār (1985) Al-Jame' al-Mufradat Al-Advia wa-al Aghzia Vol. 1. Central Council for Research in Unani Medicine, New Delhi
- Ibn Baytār (1986) Al-Jame' al-Mufradat Al-Advia wa-al Aghzia Vol. 2. Central Council for Research in Unani Medicine, New Delhi
- Ibn Baytār (1999) Al-Jame' al-Mufradat Al-Advia wa-al Aghzia Vol. 3. Central Council for Research in Unani Medicine, New Delhi
- Ibn Baytār (2003) Al-Jame' al-Mufradat Al-Advia wa-al Aghzia Vol. 4. Central Council for Research in Unani Medicine, New Delhi
- Ibn Sinā (1593) Al-Qanun fi-al Tibb. Saab Medical Library, Beirut
- Ibn Sinā (1879) Al Qanoon Fil Tibb Vol. 1. Munshi Nawal Kishore, Lucknow
- Ijaz N, Welsh S, Zhang Q, et al (2021) A crosssectional workforce survey of three traditional and complementary medicine professions in Ontario, Canada. PLoS One 16:e0250223.
 - https://doi.org/10.1371/journal.pone.0250 223
- Islam MU, Nayab M, Ansari AN (2021) Effect of dry cupping versus soft and prolonged massage in the management of knee osteoarthritis A randomized controlled clinical trial. J Complement Integr Med 18:797–804. https://doi.org/10.1515/jcim-2020-0350

- Jeong H, Liu Y, Kim HS (2017) Dried plum and chokeberry ameliorate D-galactose-induced aging in mice by regulation of Pl3k/Akt-mediated Nrf2 and Nf-kB pathways. Exp Gerontol 95:16–25. https://doi.org/10.1016/j.exger.2017.05.00 4
- Jurjānī AH (1878) Zakhira Khwarazm Shahi Vol. 2. Munshi Nawal Kishore, Lucknow
- Kausar F, Yusuf Amin KM, Bashir S, et al (2021) Concept of 'Ihtiraq' in Unani Medicine A correlation with oxidative stress, and future prospects. J Ethnopharmacol 265:. https://doi.org/10.1016/j.jep.2020.113269
- Keshavarz M, Xie K, Schaaf K, et al (2023) Targeting the "hallmarks of aging" to slow aging and treat age-related disease: fact or fiction? Mol Psychiatry 28:242–255. https://doi.org/10.1038/s41380-022-01680-x
- Lee J, Torosyan N, Silverman DH (2017)
 Examining the impact of grape consumption on brain metabolism and cognitive function in patients with mild decline in cognition: A double-blinded placebo controlled pilot study. Exp Gerontol 87:121–128. https://doi.org/10.1016/j.exger.2016.10.00 4
- Ma X, Ma X, Ma Z, et al (2014) Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model. Exp Ther Med 8:1371–1374. https://doi.org/10.3892/etm.2014.1978
- Majūsī A (1889a) Kamil al-Sinā'ah al Tibbiyah Vol. 2. Munshi Nawal Kishore, Lucknow Majūsī A (1889b) Kamil al-Sinā'ah al Tibbiyah Vol.1. Munshi Nawal Kishore, Lucknow
- Mao Y, Huang J, Li S, et al (2025) Brussels Chicory Enhances Exhaustive Aerobic Exercise Performance and Post-Exercise Recovery, Possibly Through Promotion of Lactate Oxidation: A Pilot Randomized, Single-Blind, Placebo-Controlled, Two-Way Crossover Study. Nutr 17:. https://doi.org/10.3390/nu17020365
- Martins T, Leite R, Matos AF, et al (2022) Beneficial Effects of Broccoli (Brassica oleracea var italica) By-products in Dietinduced Obese Mice. In Vivo (Brooklyn) 36:2173–2185.
- https://doi.org/10.21873/invivo.12943 Masic I (2012) Thousand-year anniversary of

- the historical book: "Kitab al-Qanun fit-Tibb"-The Canon of Medicine, written by Abdullah ibn Ibn Sinā. J Res Med Sci 17:993–1000
- Mirchandani AS, Sanchez-Garcia MA, Walmsley SR (2024) How oxygenation shapes immune responses: emerging roles for physioxia and pathological hypoxia. Nat Rev Immunol 25:161–177. https://doi.org/10.1038/s41577-024-01087-5
- Mobeen A, Hakeem A (2023) Efficacy of herbal formulations Sufoof-i-Tabkheer and Arq-i-Badiyan in dyspepsia: An openlabelled single-arm clinical study. J Herb Med 41:100700. https://doi.org/https://doi.org/10.1016/j.he rmed.2023.100700
- Mohanty P, Kishore J, Acharya GC, et al (2024)
 Utilization of Ayurveda, Yoga,
 Naturopathy, Unani, Siddha, and
 Homoeopathy (AYUSH) Practitioners'
 Services Among Older Adults: Results
 From the Longitudinal Aging Study in
 India. Cureus 16:e62192.
 https://doi.org/10.7759/cureus.62192
- Mohsenpour MA, Samadani M, Shahsavani Z, et al (2023) The effect of celery (Apium graveolens) powder on cardiometabolic factors in overweight/obese individuals with type 2 diabetes mellitus: A pilot randomized, double-blinded, placebocontrolled clinical trial. Food Sci Nutr 11:5351–5363.
 - https://doi.org/10.1002/fsn3.3493
- Nestel P, Cehun M, Chronopoulos A (2004) Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. Am J Clin Nutr 79:390– 395. https://doi.org/10.1093/ajcn/79.3.390
- Nigar Z, Itrat M (2013) Evaluation of a Unani polyherbal formulation (Tiryaqe wabai) as an immunostimulator in elderly persons. Anc Sci Life 33:117. https://doi.org/10.4103/0257-7941.139054
- Nikhat S. Fazil (2022)M History, phytochemistry, experimental pharmacology and clinical uses of honey: A comprehensive review with special reference Unani medicine. to Ethnopharmacol 282:114614. https://doi.org/10.1016/j.jep.2021.114614 Nikhat S, Fazil M (2023) Critical review and

- mechanistic insights into the health-protective and Immunomodulatory activity of Tiryāq (Theriac) from the purview of Unani medicine. Brain Behav Immun Integr 4:100021. https://doi.org/10.1016/j.bbii.2023.10002
- Nikhat S, Fazil M (2024) Shortening the long-COVID: An exploratory review on the potential of Unani medicines in mitigating post-Covid-19 sequelae. Phytomedicine Plus 4:100570. https://doi.org/10.1016/j.phyplu.2024.100 570
- Nizamudeen S, Bhat MDA, Malik R, et al (2024) Effect of Bergenia ligulata (Wall.) in type 2 diabetes mellitus: A randomized placebo-controlled trial. Eur J Integr Med 67:102359.
 - https://doi.org/10.1016/j.eujim.2024.1023
- Noguchi-Shinohara M, Ono K, Hamaguchi T, et al (2020) Safety and efficacy of Melissa officinalis extract containing rosmarinic acid in the prevention of Alzheimer's disease progression. Sci Rep 10:18627. https://doi.org/10.1038/s41598-020-73729-2
- Orssatto LBR, Borg DN, Pendrith L, et al (2022) Do motoneuron discharge rates slow with aging? A systematic review and meta-analysis. Mech Ageing Dev 203:111647.
 - https://doi.org/10.1016/j.mad.2022.11164
- Pavlova NN, Zhu J, Thompson CB (2022) The hallmarks of cancer metabolism: Still emerging. Cell Metab 34:355–377. https://doi.org/10.1016/j.cmet.2022.01.00 7
- Pérez-Piñero S, Ávila-Gandía V, Arias JAR, et al (2021) A 12-week randomized double-blind placebo-controlled clinical trial, evaluating the effect of supplementation with a spinach extract on skeletal muscle fitness in adults older than 50 years of age. Nutrients 13:. https://doi.org/10.3390/nu13124373
- Quamri MA, Wahab A, Alam MA, Ali BF (2021) Efficacy of Majoon-e-Seer Alvi Khan in dyslipidemia: A single blind randomized standard controlled clinical trial. Drug Metab Pers Ther 36:271–279. https://doi.org/10.1515/dmpt-2021-0117
- Rao H, Rao I, Saeed L, et al (2023)

- Phytochemical analysis and bioactivity assessment of five medicinal plants from Pakistan: Exploring polyphenol contents, antioxidant potential, and antibacterial activities. Saudi J Biol Sci 30:103783. https://doi.org/10.1016/j.sjbs.2023.10378
- Razi Z (1991) Kitab al-Mansoori. Central Council for Research in Unani Medicine, New Delhi
- Rivero-Segura NA, Zepeda-Arzate EA, Castillo-Vazquez SK, et al (2024). Exploring the Geroprotective Potential of Nutraceuticals. Nutrients. 16:2835. 10.3390/nu16172835.
- Rushd I (1987) Kitab al-Kulliyat, 2nd edn. Central Council for Research in Unani Medicine, New Delhi
- Ruyvaran M, Zamani A, Mohamadian A, et al (2022) Safflower (Carthamus tinctorius L.) oil could improve abdominal obesity, blood pressure, and insulin resistance in patients with metabolic syndrome: A randomized, double-blind, placebocontrolled clinical trial. J Ethnopharmacol 282:114590.
- https://doi.org/10.1016/j.jep.2021.114590
 Saber TM, Abo-Elmaaty AMA, Said EN, et al
 (2022) Alhagi maurorum Ethanolic
 Extract Rescues Hepato-Neurotoxicity and
 Neurobehavioral Alterations Induced by
 Lead in Rats via Abrogating Oxidative
 Stress and the Caspase-3-Dependent
 Apoptotic Pathway. Antioxidants 11:.
 https://doi.org/10.3390/antiox11101992
- Saleem S, Ansari AH, Ansari A (2022) Effect of Arjun Chl on cardiovascular risk factors a randomized controlled clinical trial. J Complement Integr Med 19:145–154. https://doi.org/10.1515/jcim-2020-0439
- Sattar Z, Iranshahi M (2017) Phytochemistry and pharmacology of ferula persica boiss.: A review. Iran J Basic Med Sci 20:1–8. https://doi.org/10.22038/ijbms.2017.8085
- Schramm DD, Karim M, Schrader HR, et al (2003) Honey with high levels of antioxidants can provide protection to healthy human subjects. J Agric Food Chem 51:1732–1735. https://doi.org/10.1021/jf025928k
- Serrano JCE, Castro-Boqué E, García-Carrasco A, et al (2023) Antihypertensive Effects of an Optimized Aged Garlic Extract in Subjects with Grade I Hypertension and Antihypertensive Drug Therapy: A

- Randomized, Triple-Blind Controlled Trial. Nutrients 15:. https://doi.org/10.3390/nu15173691
- Shammas MA (2011) Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care 14:28–34. https://doi.org/10.1097/MCO.0b013e3283 4121b1
- Sharma G, Goodwin J (2006) Effect of aging on respiratory system physiology and immunology. Clin Interv Aging 1:253–260.
 - https://doi.org/10.2147/ciia.2006.1.3.253
- Shiffa M, Siddiqui MA, Sultana A, et al (2013) Comparative clinical evaluation of leech therapy in the treatment of knee osteoarthritis. Eur J Integr Med 5:261– 269.
 - https://doi.org/https://doi.org/10.1016/j.eu jim.2012.12.004
- Siddiqui NA, Rahman R ur, Shamsi Y (2024)
 Efficacy and safety of a Unani polyherbal formulation with Telmisartan in Stage-2 essential hypertension: An open-label, randomized, standard controlled clinical study. Pharmacol Res Nat Prod 4:100083.
 - https://doi.org/https://doi.org/10.1016/j.pr enap.2024.100083
- Stanaway L, Rutherfurd-Markwick K, Page R, et al (2019) Acute supplementation with nitrate-rich beetroot juice causes a greater increase in plasma nitrite and reduction in blood pressure of older compared to younger adults. Nutrients 11:. https://doi.org/10.3390/nu11071683
- Subash S, Essa MM, Braidy N, et al (2016) Consumption of fig fruits grown in Oman can improve memory, anxiety, and learning skills in a transgenic mice model of Alzheimer's disease. Nutr Neurosci 19:475–483.
 - https://doi.org/10.1179/1476830514Y.000 0000131
- Sun Z, Park SY, Hwang E, et al (2016) Dietary Foeniculum vulgare Mill extract attenuated UVB irradiation-induced skin photoaging by activating of Nrf2 and inhibiting MAPK pathways. Phytomedicine 23:1273–1284. https://doi.org/10.1016/j.phymed.2016.06. 008
- Tahseen Z, Sofi G, Bin Heyat MB, et al (2024) Exploring Obstruction and Deobstruent

- Drugs in Unani Medicine: A Comprehensive Survey and Future Directions. Altern Ther Health Med 30:20–27
- Vega RM, Avva U (2019) Pediatric Dehydration. In: StatPearls. Treasure Island (FL)
- Vishwanatha U, Guruprasad KP, Gopinath PM, et al (2016) Effect of Amalaki rasayana on DNA damage and repair in randomized aged human individuals. J Ethnopharmacol 191:387–397. https://doi.org/10.1016/j.jep.2016.06.062
- Ward SJ, Hill AM, Buckley JD, et al (2022)
 Minimal changes in telomere length after a
 12-week dietary intervention with almonds
 in mid-age to older, overweight and obese
 Australians: Results of a randomised
 clinical trial. Br J Nutr 127:872–884.
 https://doi.org/10.1017/S0007114521001
 549
- West JB (2011) History of respiratory gas exchange. Compr Physiol 1:1509–1523. https://doi.org/10.1002/cphy.c091006
- WHO (2022) WHO International Standard Terminologies on Unani Medicine. World Health Organization, Geneva
- WHO (2024) Long-term care for older people: package for universal health coverage. Geneva
- Wick G, Jansen-Dürr P, Berger P, et al (2000) Diseases of aging. Vaccine 18:1567–1583. https://doi.org/10.1016/S0264-410X(99)00489-2
- Xin B, Mu S, Tan T, et al (2020) Belief in and use of traditional chinese medicine in shanghai older adults: A crosssectional study. BMC Complement Med Ther 20:128. https://doi.org/10.1186/s12906-020-02910-x
- Yadegari M, Sellami M, Riahy S, et al (2019) Supplementation of adiantumcapillusveneris modulates alveolar apoptosis under hypoxia condition in wistar rats exposed to exercise. Med 55:401. https://doi.org/10.3390/medicina5507040
- Yang T, Liu J, Yang M, et al (2017) Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by modulating multiple cellular pathways. Oncotarget 8:5800– 5813.
 - https://doi.org/10.18632/oncotarget.10584