Review Article

Anti-inflammation and antioxidant potentials of *Avicennia* plants: A systematic review

Fathia Kesuma Dinanti^{1,2}, Marsetyawan Soesatyo³, Jajah Fachiroh³, Ary Setya Hernanda⁴, Benny Diah Madusari⁵, Mae Sri Sartati Wahyuningsih^{6,7,*}

¹Doctoral Program of Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada. Jl. Farmako Sekip Utara, Sleman Regency, 55284, Yogyakarta, Indonesia

²Department of Biology, Faculty of Medicine, Universitas Islam Sultan Agung. Jl. Kaligawe Raya Km. 4, Semarang, 50112, Central Java, Indonesia

³Department of Histology and Cell Biology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada. Jl. Farmako Sekip Utara, Sleman Regency, 55284, Yogyakarta, Indonesia

⁴Department of Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dharmahusada Permai no. 1, Surabaya, 60115, East Java, Indonesia

⁵Aquaculture Department, Faculty of Fisheries, Pekalongan University, Jl. Sriwijaya no. 3 Pekalongan, 51119, Central Java, Indonesia

⁶Center for Herbal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada. Jl. Farmako Sekip Utara, Sleman Regency, 55284, Yogyakarta, Indonesia

⁷Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada. Jl. Farmako Sekip Utara, Sleman Regency, 55284, Yogyakarta, Indonesia

Article history:

Received: Jun 03, 2025 Received in revised form: Jul 31, 2025 Accepted: Aug 10, 2025 Epub ahead of print

* Corresponding Author:

Tel: +62274560300 Fax: +62274581876 maeshw@ugm.ac.id

Keywords:

Mangrove Folk medicine Herbal extract

Abstract

Objective: Avicennia is a genus of coastal plants used in Indonesian folk medicine to treat diseases. This systematic review aimed to summarize and evaluate recent findings on the anti-inflammatory and antioxidant properties of Avicennia species, and explore their possible mechanisms in combating inflammation and oxidative stress

Materials and Methods: Following PRISMA 2020 guidelines, literature search was conducted using databases (Science Direct, Google Scholar, Scopus, PubMed, PubPharm, and LILACs). Keywords such as "Avicennia," "anti-inflammatory," and "antioxidant" were used. Risk of bias was assessed using OHAT and SYRCLE's RoB tool.

Results: From 587 articles, 16 were selected for analysis (13 *in vivo* studies and 3 *in vitro* studies). The anti-inflammatory properties of *Avicennia* species have been associated with regulating cytokines levels, reducing nitric oxide production, and promoting lymphocyte proliferation. The *PI3K/Akt* and *mTOR* pathways emerged as central mechanisms. The antioxidant effects were observed through reduced lipid peroxidation, lower reactive oxygen species, and regulation of enzymatic antioxidants. Study quality varied in design, methods, and depth of mechanistic insights.

Conclusion: This review supports the traditional use of *Avicennia* for treating inflammation and oxidative stress. However, further research, especially on mechanisms of action and pharmacokinetics, is needed before clinical trials can be pursued for its therapeutic development.

Please cite this paper as:

Dinanti F.K, Soesatyo M, Fachiroh J, Hernanda A.S, Madusari B.D, Wahyuningsih M.S.S. Anti-inflammation and antioxidant potentials of *Avicennia* plants: A systematic review. Avicenna J Phytomed, 2025. Epub ahead of print.

Introduction

Avicennia, or mangrove or "api-api", is a genus commonly found in mangrove forests located at the outermost areas or near the sea. These plants live in shallow muddy soils with sandy substrates that contain low organic matter and high salinity levels (Srikanth et al. 2016). Mangrove forests are primarily located in warmer parts of the world such as the equatorial region including Indonesia, Malaysia, Thailand, and India (Saenger et al. 2019). The total area of mangrove forests worldwide is approximately 137.600 square kilometers. In Indonesia, mangrove forests can be found on the western coastline of Sumatra, parts of the northern coastline of Java, Sulawesi, and Kalimantan, as well as the southern coastline of Papua. Referring to data from the Central Bureau of Statistics, Indonesia has the greatest amount of coastline, with approximately 95,000 kilometers, making its total area of mangrove forests about three million hectares (Statistik 2021). Mangroves are beneficial for preventing coastal erosion, serving as habitats for fisheries, mitigating climate change, and acting as a source of medicinal plants (Desiani et al. 2022; Fahrurrozi et al. 2024; Madusari et al. 2024). One of the various types of mangroves in mangrove forests is the genus Avicennia. In traditional medicine, the first study focused on the traditional use of Avicennia, particularly for treating malaria, hemorrhoids, rheumatism, sore throat, hepatitis, asthma, diarrhea, and other inflammatory conditions (Thirunavukkarasu et al. 2011). Empirically, communities living in coastal areas of Indonesia often use mangrove

plants as medicinal plants to treat various illnesses.

Medicinal plants have traditionally been used as natural remedies for treating a wide range of diseases (Soudkhah et al. 2025; Nova et al. 2020; Vakkalagadda and Lankalapalli 2020). For an herb to be developed into herbal medicine or dietary supplement, its effects must scientifically proven, and its mechanism of action should also be clearly explained (Kosoe et al. 2024; Wang et al. 2024). The therapeutic potential of Avicennia as a phytomedicine with anti-inflammatory and antioxidant potentials is well-established. Research has explored the effects of Avicennia plant extracts on conditions such as edema, arthritis, ulcerative colitis, and liver damage, using both in vitro and in vivo methods (Sumithra et al. 2011; Vellimalai et al. 2019; Victoria et al. 2012). This review aims to compile and analyze the scientific data of the anti-inflammatory and antioxidant potentials of Avicennia species, utilizing findings from experimental studies to support future researches.

Materials and Methods

This systematic review was conducted in accordance with the guidelines of the preferred reporting items for systematic review and meta-analysis (PRISMA) (Moher et al. 2010). The quality of the selected studies is summarized in Table 1. The risk of bias was assessed according to the guidelines of the systematic review centre for laboratory animal experimentation (SYRCLE) and the office of health assessment and translation (OHAT) (Chen et al. 2014).

Table 1. Evaluation of the quality of studies on the anti-inflammatory and antioxidant potentials of *Avicennia* plants.

First author	Species Country of origin/ plants location/ or period of the		Authenticated species	Voucher specimen deposited ?	Quality control reported?	Chemical analysis reported?	
Sumithra Avicennia		Machilipatnam port	Yes	No	No	No	
(2011)	officinalis	area of Krishna District of Andhra pradesh, India					
Sura (2011)	Avicennia officinalis	Tamilnadu, India	Yes	No	No	No	
Rise (2012)	Ävicennia marina	Pichavaram mangrove forest, India	Yes	Yes	No	No	
Fang (2013)	Avicennia marina	Techeng Island, Xiashan district, Zhanjiang, China. Period: September 2004	Yes	Yes	No	Yes - C NMR, FT-IR, HPSEC	
Gandomani (2015)	Avicennia marina	Nayband port, Boushehr province, Iran. Period: April 2011	Yes	Yes	No	No	
Kumar (2016)	Avicennia marina	Muthupet, Thiruvarur district, Tamil Nadu, India	Yes	Yes	No	No	
Barbosa (2019)	Avicennia schaueriana	The northern coast of the state of Pernambuco, Brazil. Period: November 2014	Yes	Yes	No	UPLC- DAD- QTOF- MS/MS	
Okla (2019)	Avicennia marina	Jazan district, Kingdom of Saudi Arabia	No	No	No	No	
Vellimalai (2019)	Avicennia marina	Muthupet, Thiruvarur district, Tamilnadu, India	Yes	Yes	No	No	
Al- Jaghthmi (2020)	Avicennia marina	Farasan Island, Jizan and Shuaiba area, Kingdom Saudi Arabia. Period: January 2018	Yes	No	No	No	
Qurrohman (2020)	Avicennia marina	Lubuk Kertang, District West Brandan, Langkat, Indonesia	Yes	No	No	No	
Sadoughi (2020)	Avicennia marina	The northern coast of Qeshm Island, Iran. Period: May 2017 (spring season)	Yes	Yes	No	No	
Yi (2020)	Avicennia marina	Beihai City, China	Yes	Yes	No	Yes – HPLC	
Yassien (2021)	Avicennia marina	Safaga city on the western side of the Red Sea coast, Egypt	No	No	No	No	
Mitra (2022)	Avicennia alba	Sylhet, Bangladesh	Yes	No	No	No	

NMR: Nuclear Magnetic Resonance; FTIR: Fourier Transform- Infrared Spectroscopy; HPSEC: High Performance Size Exclusion Chromatography; UPLC-DAD-QTOF-MS: Ultra-Performance Liquid Chromatography coupled with Diode-Array Detection and Quadrupole Time-Off light Mass Spectrometry; HPLC: High Performance Liquid Chromatography.

Search strategy

A search strategy was first performed in October 2024 in the following databases: Google Scholar, ScienceDirect, LILACS, Scopus, PubMed, and PubPharm. The manual review of the included articles aimed to identify any potential articles that might have been missed during the electronic search. The authors used the following combination of keywords in PubMed: avicennia[Title/Abstract] AND (oxidative[Title/Abstract] OR oxidant[Title/Abstract] OR antioxidant[Title/Abstract] OR inflammation[Title/Abstract] OR inflammatory[Title/Abstract] OR

inflame[Title/Abstract]) NOT (review[Title/Abstract] OR systematic[Title/Abstract]). The reference lists of all the included articles were reviewed to identify additional relevant sources. Studies were selected based on their availability in English or *Bahasa Indonesia*, considering language barriers, the high cost of translation, and time efficiency. This study was not restricted by publication time. References were managed using Microsoft ExcelTM and duplicate entries were removed using ZoteroTM.

Study selection and data collection process

Three independent authors screened the titles and abstracts, categorizing them as "yes," "no", or "maybe". Titles and abstracts were initially reviewed, followed by a full-text assessment, with both stages screened according to the eligibility criteria. The selection of studies and data collection were conducted independently by three authors (FK, MS, and AS). Any discrepancies were resolved through discussions with three additional authors (JF, MS, and BD).

Authors collected the data using a personalized data extraction sheet in Microsoft ExcelTM, including the following details: first author, year of publication, journal title, country of origin/collection location/season, plant part, type of extract, extract dose and method of administration, inflammation model or assay type, in vivo or in vitro model, number of animals per group and cell type, control used, evaluated parameters, and results. For both in vivo and in vitro models, the evaluated variables included the plant collection location, the specific plant part used, the type of extract, and the measured levels of inflammatory and antioxidant parameters. Data on the mean, percentage, and standard deviation were also recorded.

Eligibility criteria

The PICOS criteria were defined as follows: 1. Population: Animals (rats or mice), *in vitro* tests, or cells; 2. Intervention: Administration of extracts of different plant parts in *in vivo* and/or *in vitro* designs. *Avicennia* plants can be utilized in various forms including crude extracts, partitions, fractions, or isolated specific compounds; 3. Control: Negative controls (phosphate buffer saline or saline), positive controls (standard drug); 4. Outcome: anti-inflammatory activity, antioxidant activity; 5. Study design: experimental study.

This review included studies that were either *in vitro* or *in vivo* experiments and specifically investigated the anti-inflammatory or antioxidant potentials of *Avicennia*, with publications available in

English or *Bahasa Indonesia*. For studies examining additional effects beyond antiinflammatory and antioxidant activities, only relevant data were extracted—
specifically, those presenting the data in graphs, tables, or text. Regarding the animal population criteria, studies involving male or female mice and rats were included. Additionally, *in vivo* studies utilizing inflammation models (such as paw edema model, colitis model, arthritis model, and etc.) were also considered. The criteria for exclusion during the title-abstract screening were as follows:

- 1. Studies performed *ex vivo* or *in silico* models
- 2. Treatment involving any plant other than the *Avicennia* species
- 3. Treatment involving nanoparticles
- 4. Book chapters, encyclopedias, conference abstracts, or short communications
- 5. *In vivo* studies that did not adhere to Ethics Committee standards
- 6. Phytochemical analyses, anatomical and morphological studies, or cytogenetic research
- 7. Cell viability outcomes, histological data, or toxicity test only
- 8. Studies without a control group

Risk of bias in individual studies

The completeness of reporting on the materials used in each selected study was evaluated based on details about the Avicennia species material, voucher specimens, quality control of the extract, and chemical analysis. The present review evaluated the risk of bias in the selected studies using the systematic review centre for laboratory animal experimentation (SYRCLE) tool which consists of 10 items covering six types of bias to assess methodological quality. These entries included selection bias (allocation concealment, baseline characteristics, and sequence generation), performance bias (random and blinding housing), detection (random and blinding outcome assessment), attrition bias (incomplete

outcome data), reporting bias (selective outcome reporting), and other possible biases (Athalye-Jape 2021; Chen et al. 2014; Ritskes-Hoitinga and Pound 2022). Bias data were compiled in Excel worksheet, with judgments categorized as follows: 'yes' for low risk of bias, 'no' for high risk of bias, and 'unclear' for insufficiently reported information.

As far as we are aware, there is no validated checklist currently available for assessing the risk of bias for *in vitro* studies (Almeida et al. 2021; Duchman et al. 2019). We utilized several checklists from the key data extraction elements in the office of health assessment and translation (OHAT) guideline for systematic reviews and evidence integration to evaluate potential bias for *in vitro* studies (Tran et al. 2021).

Results Study Selection

A total of 587 articles were collected from the database search. After removing duplicates, 252 studies remained. Following title and abstract screening, 173 articles were excluded for various reasons, including four that were published in languages other than English and Bahasa Indonesia, 159 articles were unrelated to anti-inflammatory or antioxidant potentials of Avicennia, six articles were excluded because they were experimental publications, and four articles used nanoparticles as the intervention. Fulltext screening of the remaining 79 articles resulted in the exclusion of 63 studies based on the following criteria: 60 articles employed study models that were not deemed valid for demonstrating pharmacological effects, and three articles

did not investigate *Avicennia* as the primary intervention. After reaching a consensus, the reviewers determined that sixteen studies met the eligibility criteria; thirteen of these are *in vivo* studies, while three are *in vitro* studies. Figure 1 presents a flowchart detailing the study selection and search process.

Quality Assessment

The quality and potential risk of bias of the included studies were evaluated. Table 1 presents the quality evaluation of studies examining the anti-inflammatory antioxidant properties of Avicennia species. No naming inconsistencies were found, as articles included full botanical taxonomic names. It is essential to verify each plant taxonomically and clearly state its full name, as incomplete species names can cause confusion among readers. Errors in plant nomenclature can create difficulties for other researchers, databases, and search engines (Dauncey et al. 2016; Rivera et al. 2014). Eight studies offered complete information on the botanical material and verified the Avicennia species by storing voucher specimens (Fang and Chen 2013; Gandomani and Malati 2014; Pereira et al. 2019; Kumar et al. 2016; Vellimalai et al. 2019; Victoria et al. 2012). Six studies reported the source of the Avicennia species but did not include voucher specimen documentation (Al-Jaghthmi et al. 2020; Mitra et al. 2022; Qurrohman et al. 2020; Rege et al. 2012; Sumithra et al. 2011; Sura et al. 2011). Two studies lacked adequate material information, as the source of the Avicennia species was not provided, and voucher specimens were absent (Okla et al. 2019; Yassien et al. 2021).

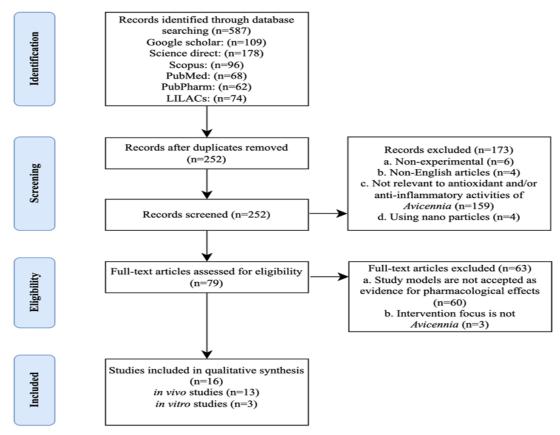


Figure 1 The flowchart depicts the articles selection process for this systematic review, in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines.

Risk of bias within each study

Table 2 presents the risk of bias assessment for in vivo studies using SYRCLE's RoB tool. The analysis revealed that eight articles had an unclear potential for selection bias, as they only mentioned group division without specifying whether randomization was applied (Al-Jaghthmi et al. 2020; Mitra et al. 2022; Okla et al. 2019; Pereira et al. 2019; Sumithra et al. 2011; Sura et al. 2011; Kumar et al. 2016; Victoria et al. 2012). The other four articles that animals mentioned all were randomized but did not provide details about the randomization method used (Gandomani and Malati 2014; Sadoughi and Hosseini 2020; Yassien et al. 2021; Yi et al. 2020), and one article explained that the animals were randomized using the random sampling (Vellimalai et al. 2019). The five articles were therefore evaluated as having a low risk of bias (Gandomani and Malati 2014; Sadoughi and Hosseini 2020; Yassien et al. 2021; Yi et al. 2020; Vellimalai et al. 2019). (1). Furthermore, all in vivo studies were deemed to have a low risk of bias regarding baseline characteristics, as the animals were either induced with an inflammatory condition or subjected to wounding prior to (2).However, allocation concealment was deemed unclear in all in vivo studies because of a lack of sufficient information regarding the concealment procedure (3). Regarding performance bias, all studies were rated as having a low risk of bias since this type of bias is associated with random housing. The animals were kept under baseline conditions, including controlled temperature, and had access to water and food before the experiment conducted (4).However, regarding blinding (5), it was uncertain if the researchers managing the animals knew which groups were the control and which were the treatment groups. Both random outcome evaluation (6) and blinding (7)

were deemed uncertain in twelve articles, as the primary studies did not specify whether outcome analysis was conducted randomly or whether those analyzing the outcomes were blinded. One article stated that the outcome analysis was performed randomly (Sadoughi and Hosseini 2020). In assessing the risk of attrition bias (8), it was noted that none of the articles reported any animal loss the experiment. No studies during described outcomes related to the risk of reporting bias (9). Concerning other sources of bias (10), twelve articles were deemed to have a low risk of bias. One article was classified as unclear due to the absence of a normal control group of animals (Sura et al. 2011). In addition, three in vivo articles did not provide evidence of ethics committee approval (Gandomani and Malati 2014; Okla et al. 2019; Sumithra et al. 2011). The results of the risk of bias assessment for in vitro studies based on the OHAT guidelines (Table 3), indicate that the information bias of both articles was considered to probably have a low risk of bias (Qurrohman et al. 2020; Rege et al. 2012). This was due to the lack of information regarding the source lymphocytes used in the studies, which is animal species the as source of lymphocytes not being clearly specified (Fang and Chen 2013). Two studies did not mention the statistical analysis methods used and the replication procedures used during the experiments (Qurrohman et al. 2020; Rege et al. 2012).

Table 2. Risk of bias in the thirteen in vivo studies included in the systematic review, assessed using SYRCLE's RoB tool.

Study	Model	Selection Bias		Performance Bias		Detection Bias		Attrition Bias	Reporting Bias	Other	
		1	2	3	4	5	6	7	8	9	10
Sumithra (2011)	Paw edema	?	Y	?	Y	?	?	?	?	Y	Y
Sura (2011)	Gastric ulcer	?	Y	?	Y	?	?	?	?	Y	?
Rise (2012)	Ulcerative colitis	?	Y	?	Y	?	?	?	?	Y	Y
Gandomani (2015)	Arthritis	Y	Y	?	Y	?	?	?	?	Y	Y
Kumar (2016)	Liver damage	?	Y	?	Y	?	?	?	?	Y	Y
Barbosa (2019)	Gastric ulcer	?	Y	?	Y	?	?	?	?	Y	Y
Okla (2019)	Type 1 diabetes	?	Y	?	Y	?	?	?	?	Y	Y
Vellimalai (2019)	Liver damage	Y	Y	?	Y	?	?	?	?	Y	Y
Al-Jaghthmi (2020)	Type 2 diabetes	?	Y	?	Y	?	?	?	?	Y	Y
Sadoughi (2020)	Type 1 diabetes	Y	Y	?	Y	?	Y	Y	?	Y	Y
Yi (2020)	Vascular dementia	Y	Y	?	Y	?	?	?	?	Y	Y
Yassien (2021)	Hyperlipidemia	Y	Y	?	Y	?	?	?	?	Y	Y
Mitra (2022)	Paw edema	?	Y	?	Y	?	?	?	?	Y	Y

Y: Yes; N: No; ?: Unclear

Table 3. Risk of bias for in vitro studies based on OHAT guideline

Bias categories	Questions	Fang and Chen (2013)	Rege et al. (2013)	Qurrohman et al. (2020)
Selection bias	Was the dosage or exposure level properly randomized?	1	1	1
	Was the assignment to study groups effectively hidden from those involved?	1	1	1
Confounding bias	Did the study design or analysis consider key confounding and modifying variables?	1	1	1
	Did the researchers account for or control other exposures likely to introduce bias into the results?	1	1	1
Performance bias	Were the experimental conditions the same for all study groups?	1	1	1
	Did the researchers follow the study protocol as planned?	2	2	2
Detection bias	Were the individuals assessing outcomes unaware of the study group assignments or exposure levels?	1	1	1
	Were confounding variables measured consistently across all groups using valid and reliable methods?	3	3	3
	Is the exposure characterization trustworthy and reliable?	1	2	1
	Is the outcome assessment reliable and credible?	1	2	1
Selective reporting bias	Were all the measured outcomes fully reported? (Including authors' disclosure of conflicts of interest).	1	1	1
Information bias	Purity of chemical, number of replicates per group, report on data from positive controls, diagnostic or method to measure endpoint, statistical method	2	4	2

1: Definitely low risk of bias; 2: Probably low risk of bias; 3: Probably high risk of bias or Not Reported; 4: Definitely high risk of bias

Dinanti et al.

Study characteristics Species of *Avicennia* and part of the plant

Four species of genus Avicennia were identified; A. officinalis, A. marina, A. schaueriana, and A. alba. Avicennia

marina is the most widely studied species. The leaves are the most commonly used part of the plant in all the selected studies (Table 4). Therefore, leaves are also the part of *Avicennia* which most commonly consumed by the society.

Table 4. Articles on the anti-inflammatory and antioxidant potentials of the Avicennia genus.

First	Species	Plant	Solvent	Type of inflammation	Extract dose/	Control used	Results
author		part		model/type of assay	concentration		
Sumithra	Avicennia	Leaves	Methanol	Carrageenan, formalin,	200, 400 mg/kg	NC: 0.25% CMC.	↓Paw edema
	officinalis			and adjuvant-induced paw edema	p.o	PC: Indomethacin 10 mg/kg	
Sura	Avicennia	Leaves	Ethanol	Aspirin +pyloric ligation	250, 500 mg/kg	NC: Normal saline.	↓Ulcer index
	officinalis			and indomethacin-	p.o	PC: Omeprazole	
				induced ulceration on		30mg/kg	
Rege	Avicennia	Leaves	Distilled	albino Wistar rats Fe2+-Ascorbic acid-	20, 200, 400	Butylated Hydroxyl	↓Lipid
Rege	officinalis	Leaves	water	induced lipid peroxidation	μg/ml	Toluene	peroxidation
	ogremans		Water	on rat liver mitochondria in vitro	rg	Totale	inhibitory activity
Victoria	Avicennia	Whole	Methanol	Acetic acid induced	10 mg/kg i.p	Sulfasalazine 100	↑SOD, ↑GPx,
	marina	plant		ulcerative colitis on male		mg/kg	↑GSH, ↓NO,
				BALB/c mice			↓LPO, ↓wet colonic weights,
							↓macroscopic
							inflammation score
Fang	Avicennia	Stem	Ethanol and	Concanavalin A and	50, 100, 200	Not defined	↑LPS-induced B
	marina		distilled	Lipopolysaccharide	μg/ml		lymphocyte
			water	induced lymphocytes in vitro			proliferation
Gandomani	Avicennia	Leaves	Ethanol:	Complete Freund's	200, 400 mg/kg	Ibuprofen 53 mg/kg	↓TNF-α, ↓IL-1β,
	marina		Water (7:3)	Adjuvant- induced arthritis on male Wistar	p.o		↓IL-6, and ↓Ankle diameter
				rats			
Kumar	Avicennia	Leaves	Ethanol	Ethanol induced liver	100 mg/kg p.o	Silymarin 100 mg/kg	↑CAT, ↑SOD,
	alba			damage on male albino			↑GPx, ↑GSH,
ъ.			••	Wistar rats	50 100 200	D	↓TBARS level
Pereira	Avicennia schauerian	Leaves	Hexane, ethyl acetate,	Ethanol induced- gastric ulcer on male Wistar male	50, 100, 200 mg/kg p.o	Pantoprazole 30 mg/kg	↓Ulcer index, ↓MPO, ↓NO
	а		and ethanol	rats	mg/kg p.o	mg/kg	ţivii O, ţivo
Okla	Avicennia	Leaves	Ethanol	Diabetic model on Swiss	2mg/g p.o	NC: Phosphate	↓NO, ↓H2O2,
	marina			Webster mice		buffered saline	↓MDA, ↑GSH, ↑CAT
Vellimalai	Avicennia	Leaves	Ethanol	Alcohol-induced liver	100 mg/kg p.o	NC: Normal saline.	↑CAT, ↑SOD,
	marina			toxicity on male albino			↑GPx, ↑GSH,
				Wistar rats		PC: Silymarin	↓LPO, ↓TBARS
4.1			TS: (31 1	D: 1 .: 11 C 1	400 4	N . I C . I	level
Al-	Avicennia	Leaves	Distilled	Diabetic model of male Wistar albino rats	400 mg/kg p.o	Not defined	↓MDA, ↑GSH,
Jaghthmi Qurrohman	marina Avicennia	Leaves	water Chloroform:	WiDr colon cancer cells	60μg/ml	5-Fu	\uparrow CAT, \uparrow SOD \downarrow P13k, \downarrow Akt1,
Quitoinnun	marina	Leaves	methanol	in vitro	ookg iii	314	$\downarrow mTOR \uparrow p53$
			(2:1, v/v)				ψ
Sadoughi	Avicennia	Leaves	Ethyl alcohol	Alloxan monohydrate-	50, 100, and 200	Not defined	↓TNF-α, ↓IL-1β,
	marina		and distilled	induced type 1 diabetic on	mg/kg p.o		↓IL-6, ↑SOD,
			water (1:1, v/v)	male Wistar rats			↑CAT, ↑GPx
Yi	Avicennia	Fruit	Ethanol	Vascular dementia model	125, 500 mg/kg	Oxiracetam 250	↓MDA, ↓NO,
	marina			on Sprague-Dawley rats	p.o	mg/kg/day	↑GPx, ↑SOD
Yassien	Avicennia	Whole	Ethanol	Dexamethasone-induced	200, 400 mg/kg	Atorvastatin 40	↓MDA, ↓NO
	marina	plant		hyperlipidemia on male albino rats	p.o	mg/kg	
Mitra	Avicennia	Leaves	Methanol	Carrageenan induced paw	200, 400, 500	Indomethacin 10	↓Paw edema
	alba			edema on Swiss albino	mg/kg p.o	mg/kg	•
				mice			

CMC: Sodium carboxymethylcellulose; SOD: Superoxide dismutase; GPx; Glutathione peroxidase; GSH: Glutathione; NO: Nitric oxide; LPO: Lipid peroxidation; TBARS: Thiobarbituric acid reactive substances; LPS: Lipopolysaccharide; TNF: Tumor necrosis factor; IL: Interleukin; ELISA: Enzyme-linked Immunosorbent Assay; MPO: Myeloperoxidase; MDA: Malondialdehyde; CAT: Catalase; RT-PCR: Reverse Transcription Polymerase Chain Reaction; mTOR: mammalian Target of Rapamycin; NC: Negative control; PC: Positive control; p.o: per oral; i.p: intraperitoneal.

Extraction method and solvents used

Three extraction methods were identified: maceration, percolation, and centrifugal extraction. Four selected studies were found to use the percolation method (Fang and Chen 2013; Kumar et al. 2016; Sura et al. 2011; Vellimalai et al. 2019), one of which extracted A. alba leaves using percolation for 24 hr with ethanol as the solvent (Vellimalai et al. 2019). Three centrifugation studies used method (Victoria et al. 2012; Al-Jaghthmi et al. 2020; Yassien et al. 2021). Nine studies reported the use of the maceration method (Gandomani and Malati 2014; Sadoughi and Hosseini 2020; Sumithra et al. 2011; Rege et al. 2012; Okla et al. 2019; Pereira et al. 2019; Yassien et al. 2021; Yi et al. 2020; Qurrohman et al. 2020). Cold extraction (maceration) was the most commonly used method, while ethanol and methanol were the most commonly used solvents in selected studies.

Anti-inflammatory potentials of *Avicennia* plants *Avicennia* modulates inflammatory cytokines production

Two studies evaluated the effect of Avicennia plants on cytokines production (Gandomani and Malati 2014; Sadoughi and Hosseini 2020). The cytokine outcome measurement technique used in the studies is enzyme-linked immunosorbent assay (ELISA). Avicennia marina inhibited the level of interleukin 6, interleukin 1β, and tumor necrosis factor-α dose-dependently in complete Freund's Adjuvant-induced with The group treated hydroalcoholic extract of A. demonstrated a notable decrease cytokine production compared to the negative control group. This outcome was similar to the effect of the non-steroidal anti-inflammatory drug, ibuprofen, at a dosage of 53 mg/kg BW (Gandomani and Malati 2014). Avicennia marina also possessed anti-inflammatory effect by suppressing the same cytokines in alloxan monohydrate-induced type 1 diabetic

Wistar rats in a dose-dependent manner (Sadoughi and Hosseini 2020).

Avicennia inhibits nitric oxide (NO) production

Five studies evaluated the effect of A. marina and A. schaueriana on the production of NO in in vivo model (Okla et al. 2019; Pereira et al. 2019; Victoria et al. 2012; Yassien et al. 2021; Yi et al. 2020). The extract of A. marina showed a suppressive effect on NO production in rats hyperlipidemia induced dexamethasone. The group treated with A. marina extract exhibited a significant decrease in NO production in a dosedependent manner, compared to both the negative control group and the group receiving atorvastatin at a dose of 40 mg/kg BW (Yassien et al. 2021). The whole part of A. marina, administered at 10 mg/kg BW, decreased NO production in BALB/c mice with acetic acid-induced ulcerative colitis. Moreover, NO production in the A. marina group was lower than that in the group treated with sulfasalazine at 100 mg/kgBW (Victoria et al. 2012).

Avicennia induces lymphocytes proliferation

One study was found to prove the ability of A. marina in inducing lymphocyte proliferation. The acidic pectic polysaccharide in A. marina, HAM-3-IIb-II, was shown to significantly affect lipopolysaccharide-induced B lymphocyte proliferation at concentrations of 50, 100, or 200 µg/ml. However, HAM-3-IIb-II had minimal impact on concanavalin mitogen-induced T lymphocyte proliferation at different concentrations when compared to the control group (Fang 2013). Lipopolysaccharide and Chen derived from the bacterial cell wall has been shown to impair the function of body organs and trigger oxidative stress by generating free radicals (Arab et al. 2023; Beheshtimanesh and Rajaei 2023).

Avicennia reduces inflammation in animal studies

Paw edema model is one of the most widely used in vivo models to study acute inflammation. Paw edema was measured using plethysmometer or caliper. Avicennia officinalis and A. alba exhibited antiinflammatory potentials by significantly decreasing paw edema in both formalin and carrageenan-induced inflammation models (Mitra et al. 2022; Sumithra et al. 2011). Avicennia marina extract at 200 and 400 mg/kg BW dosage reduced the ankle diameter of complete Freund's adjuvantinduced arthritis on rats. The dosage of 400 administered BW significantly restored the changes observed in arthritic rats to near-normal conditions and (Gandomani Malati 2014). Additionally, the administration of A. schaueriana and A. officinalis leaves extract to ethanol-induced ulcer rats model showed a reduction in the ulcer lesion index. Extract treatment at dosages of 250 and 500 mg/kg BW resulted in 18.7% and 34.4% inhibition of the ulcer index. respectively, in gastric ulcers induced by aspirin and pyloric ligation, measured by magnifying glass (Pereira et al. 2019; Sura et al. 2011).

Anti-inflammatory signaling pathway of *Avicennia*

One study evaluated the potential of Avicennia plant on inflammatory-related pathways. Avicennia marina was found to downregulate PI3k, Akt1, Egfr, and mTOR gene expressions, while upregulated p53 gene expression in WiDr cells (human colon cancer cell line), measured by reverse transcription - Polymerase Chain Reaction (RT-PCR). Polyisoprenoid isolated from A. marina suppressed the expression of PI3k, Akt1, Egfr, and mTOR with the lowest PI3k gene expression ratio value to the internal standard (β-actin). Additionally, A. marina suppressed the cell cycle cancer phase G0-G1 phase and phase S. Polyisoprenoid and 5-Fu (positive control) enhanced the early

phase of apoptosis in WiDr cell (Qurrohman et al. 2020).

Antioxidant potentials of Avicennia plants

Avicennia modulates enzymatic antioxidant production or activities

One study explained that the reduction of hydrogen peroxide (H₂O₂) production occurred after the administration of 2 mg/BW of A. marina to diabetic Webster mice. The alcoholic extract leaf extract of A. marina showed positive effects on the hepatic tissue pathology of diabetic mice. This was shown by the increase of antioxidants such as catalase (CAT) and glutathione (GSH) (Okla et al. 2019). Three in vivo studies also showed that CAT activity was affected by the administration of A. marina and A. alba (Al-Jaghthmi et al. 2020; Okla et al. 2019; Kumar et al. 2016). Four studies evaluated GSH levels in in vivo designs (Al-Jaghthmi et al. 2020; Okla et al. 2019; Kumar at al. 2016; Yassien et al. 2021). The activity of glutathione peroxide (GPx) was also induced by A. marina and A. alba. The administration of A. marina at dosages of 200 mg/kg BW and 400 mg/kg BW in diabetic mice resulted in greater induction of GPx activity compared to the control group treated with phosphatebuffered saline (Al-Jaghthmi et al. 2020; Okla et al. 2019). Furthermore, treatment with A. marina extract at dosages of 50, 100, and 200 mg/kg BW in type-1 diabetic rats led to a dose-dependent elevation in GPx levels (Sadoughi and Hosseini 2020). The GPx activity was also observed to increase in rats with ethanol-induced liver damage following the administration of 500 mg/kg BW A. alba extract (Kumar et al. 2016).

Avicennia inhibits lipid peroxidation

Avicennia officinalis and A. marina possess the ability to inhibit lipid peroxidation in *in vitro* and *in vivo* studies (Rege et al. 2012; Vellimalai et al. 2019; Victoria et al. 2012). The administration of aqueous extract of A. officinalis at 20, 200,

and 400 µg/mL concentration to Fe2+ and ascorbic acid-induced lipid peroxidation on rat liver mitochondria showed the lowering of lipid peroxidation (Rege et al. 2012). Lipid peroxidation was also reduced in rats with alcohol-induced liver damage after treatment with 100 mg/kg BW of A. marina ethanolic extract (Vellimalai et al. 2019). Avicennia marina inhibited lipid peroxidation by reducing malondialdehyde (MDA) levels in a diabetic rat model (Al-Jaghthmi et al. 2020; Okla et al. 2019), dementia rat model (Yi et al. 2020), and hyperlipidemia rats (Yassien et al. 2021). The phenylethanoid glycoside Marinoid J, isolated from A. marina fruit, significantly improved cognitive impairments in rats with vascular dementia. It protected hippocampal neurons by modulating proteins involved in oxidative stress, as evidenced by a 27.53% decrease in MDA levels within hippocampal tissue. This result was comparable to the group receiving oxiracetam as control (Yi et al. 2020). Furthermore, the MDA level in hyperlipidemia rats' liver was found to be low in treatment group receiving A. marina leaves extract. The MDA level was significantly different compared to the group that did not receive either the extract or the standard drug (Yassien et al. 2021). The ethyl acetate extract of A. schaueriana leaves, administered at dosages of 50, 100, and 200 mg/kg BW, demonstrated the ability to reduce myeloperoxidase levels in rat model of ethanol-induced gastric ulcers (Pereira et al. 2019). Methods used to parameter the antioxidant measure outcomes are enzymatic antioxidant assay and ELISA.

Discussion

Empirically for many years, *Avicennia* plants have been used as medicinal plants. Several active compounds found in *Avicennia* species have been widely shown to have therapeutic benefits including anti-inflammatory and antioxidant potentials (ElDohaji et al. 2020; Ibrahim et al. 2022;

Mangrio et al. 2016). This systematic review evaluates the existing literature on the potentials of Avicennia plants in in vitro and *in vivo* studies, specifically focusing on their anti-inflammatory and antioxidant properties from biomolecular point of view. No clinical studies on humans were found, although it is empirically often used by coastal communities to treat various diseases. In vitro studies have highlighted the positive effects of Avicennia in improving oxidative status and inflammation in various diseases. Furthermore, nearly all animal studies have demonstrated that Avicennia and its active components have beneficial effects on inflammatory, oxidative, clinical, and immunological parameters. None of the studies included in the selection reported quality control data, as none of the Avicennia preparations were found to comply with the pharmacopeia monograph. Quality control in herbal medicines is essential to ensure their safety. Herbal medicines are commonly used, and there is a common belief among the public that free natural products are contaminants, safe, and non-toxic. This misconception can lead to improper use, which may result in poisoning and serious health issues (Mukherjee 2019; Teschke and Eickhoff 2015).

Evaluating the quality of medicinal plants can be achieved by identifying chemical markers within a sample. Qualitative chemical evaluation involves identifying and characterizing secondary metabolites of medicinal plants various analytical methods. Phytochemical screening methods involve botanical identification, extraction using suitable solvents, purification, characterization of active compounds with pharmaceutical relevance (Ingle et al. 2017). Chromatographic techniques such as thin-layer chromatography (TLC)/highperformance TLC (HP-TLC) and highperformance liquid chromatography (HPLC) are widely utilized for identifying and evaluating the quality of secondary metabolites in medicinal plants. Highperformance size-exclusion chromatography (HP-SEC), also known as gel permeation chromatography (GPC) is another example of chromatographic technique that is widely used for determining the molar mass and size distribution of biopolymers in aqueous or organic solvents. These methods provide both quantitative profiles and characteristic qualitative data of the metabolites. Spectroscopic techniques, such as IR, UV, and nuclear magnetic resonance (NMR) enable the quantification of multiple compounds with similar UV absorbance. These methods offer more comprehensive analysis of traditional medicines compared to the quantification of a single compound (Upton et al. 2020). Another method that is also a top-tier technique used in research, pharmaceuticals, and quality control for herbal medicines is quadrupole time-offlight mass spectrometry (Q-TOF MS). The "quadrupole" part is a mass filter that selects ions based on their mass-to-charge ratio, and "time-of-flight" (TOF) measures the time ions take to reach the detector. This combination allows for high-resolution mass spectrometry that provides detailed identification, molecular structural information, and quantitative analysis of compounds (Allen and McWhinney 2019). Three studies reported the chemical analysis of Avicennia species using methods, such as HPLC, HPSEC, C NMR, FT-IR spectroscopy, and UPLC-DAD-QTOF-MS/MS (Fang and Chen 2013; Pereira et al. 2019; Yi et al. 2020).

In the present review, it was found that leaf of mangroves is the most commonly used part. The leaves are also the most frequently consumed part of *Avicennia* by society (Kusmana 2018; Kusmana and Sukristijiono 2016). Empirically, *Avicennia* leaves are safe for consumption. This is supported by toxicological assessments conducted on *Avicennia* plants. The LD50 analysis of *A. marina* leaf extract indicated a lethal dose of 2500 mg/kg BW. No behavioral changes or mortality were

observed at doses of 500 and 1000 mg/kg BW. Furthermore, there were no significant differences in biochemical parameters (including SGOT, SGPT, ALP, sugar, and urea) between the control group and the extract group (Beula et al. 2012). *Avicennia* also demonstrated no toxic effects on the normal HEK-293 T cell line (Sukhramani and Patel 2013). The ethanolic leaf extract of *A. officinalis* showed no toxicity in Wistar albino rats when administered at dosages of 250 and 500 mg/kg BW (Sura et al. 2011).

The process of isolating compounds from natural sources targets the isolation of metabolites because secondary compounds are believed and have been proven to provide health benefits. The goal of extracting natural products is to isolate the chemical compounds contained within the natural source (Wahyuningsih and Rakhwamati 2024). Maceration is the most commonly used method for isolating secondary metabolites in the Avicennia plants found in this study. Maceration is a method of separating compounds by soaking them in a solvent at a specific temperature (Karina et al. 2016). Soaking plant samples in a specific organic solvent causes the breakdown of cell walls and membranes due to the pressure difference between the inside and outside of the cell, allowing secondary metabolites within the cytoplasm to dissolve into the solvent (Patil 2020). One of the advantages of maceration is that natural materials do not undergo heating process, preventing degradation or secondary damage of metabolites (Azwanida 2015; Susanty 2016).

Several possible mechanisms may explain the beneficial effects of *Avicennia* plants in alleviating inflammatory diseases. *Avicennia* suppressed the production of pro-inflammatory cytokines, such as IL-6, IL-1 β , and TNF- α (Gandomani and Malati 2014; Sadoughi and Hosseini 2020). The increased generation and activity of pro-inflammatory cytokines promote immune activation and inflammation (Muzamil et al. 2021). The activation of the immune

system, inflammation, and oxidative stress are key factors in the onset and progression of various diseases (Abbas et al. 2015). Avicennia is shown to maintain its antiinflammatory effects by interrupting proinflammatory pathways such as Akt-1/mTOR(mammalian **Target** of Rapamycin) pathway (Figure 2). This pathway is an important signaling cascade regulates cell survival, metabolism, and inflammation. activation of Akt1/mTOR pathway includes three steps: the activation of Phosphoinositide 3-Kinases (PI3Ks), the

activation of Akt, and the activation of mTOR. These steps lead to protein synthesis, cell metabolism, and immune function (Hawkins and Stephens 2015; Tilley et al. 2022). Considering that the PI3K/Akt and mTOR pathways are also correlated with the activation of other signaling pathways such Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor Kappa B (NF-κB) pathways (Acosta-Martinez and Cabail Torrealba et al. 2020), it is possible that Avicennia species may also influence these pathways.

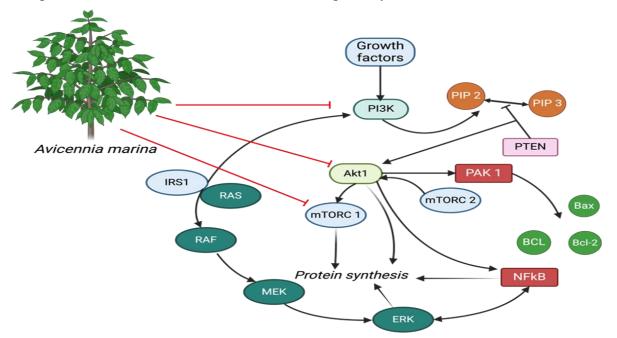


Figure 2. Suggested anti-inflammatory pathway of *Avicennia marina*. (PIP: Phosphatidylinositol; PTEN: Phosphatase and tensin homolog; PAK: p21-activated kinase; PI3K: Phosphatidylinositol 3-Kinase; IRS: Insulin receptor substrate; RAS: Rat sarcoma; RAF: Rapidly accelerated fibrosarcoma; MEK: mitogen-activated protein kinase; ERK: Extracellular signal-regulated kinase; NF-kB: Nuclear factor kappa B; BCL: B-cell lymphoma; Bax: Bcl-2-associated X protein).

Additionally, the *Akt-1/mTOR* pathway not only plays a role in the inflammatory process, but also contributes to cancer development through the inhibition of apoptosis. Its persistent activation gives cancer cells a survival advantage and promotes growth, making it a key target for anti-cancer therapies (Glaviano et al. 2023; Manning and Toker 2017; Peng et al. 2022). *Avicennia* leaves are known to be toxic to cancer cells. Polyisoprenoids extracted from *A. marina* reduced the expression of *PI3k*, *Akt1*, *Egfr*, and *mTOR* gene

expressions in WiDr cells (human colon cancer cell line) (Qurrohman et al. 2020). *A. marina* leaf extract was known to be cytotoxic to HeLa cell (cervical cancer cell) viability with IC50 value of 1115.345 g/ml (Rahman 2021).

The anti-inflammatory potentials of *Avicennia* are further supported by studies demonstrating its inhibitory effects on NO production (Okla et al. 2019; Pereira et al. 2019; Victoria et al. 2012; Yassien et al. 2021; Yi et al. 2020). Nitric oxide is an inflammatory mediator generated by

activated macrophages during the inflammatory response. This is produced by inducible nitric oxide synthase (iNOS) during inflammation. Furthermore, NO reacts with superoxide (O2-) to form peroxy-nitrite (ONOO⁻), a highly reactive molecule that contributes to oxidative stress, cell damage, and apoptosis. Nitric oxide physiologically functions both as an anti-inflammatory agent and proinflammatory mediator. The primary effects of NO are mediated through the production of cyclic guanosine monophosphate. It plays a role in innate immunity as a toxic agent against pathogens but can also influence or control the death and function of host immune modulating thereby immunity (Papi et al. 2019; Sharma et al. 2007). Figure 3 summarizes the mechanism of Avicennia plants in inhibiting NO production.

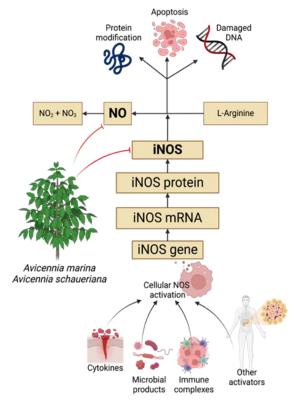


Figure 3. Avicennia plants inhibit nitric oxide (NO) production. (NO: Nitric oxide; iNOS: inducible nitric oxide synthase; mRNA: messenger ribonucleic acid).

The immunomodulatory effect of *Avicennia* plants represent another potential

mechanism through which may impact inflammatory diseases and oxidative stress. Studies suggest that A. marina can boost the immune response, especially by enhancing the activity of B lymphocytes (Fang and Chen 2013). Lymphocytes are essential components of adaptive and innate immunity (Hira 2022; Vivier et al. 2018). They combat infections, regulate immune responses, and contribute to both acute and inflammation. chronic Activated lymphocytes release pro-inflammatory cytokines that enhance immune cells recruitment and promote further inflammation (Abbas al. 2015). et However, this result requires further indepth research to determine the extent to which, Avicennia can modulate the immune system, particularly under more severe infection conditions such as tuberculosis, HIV, or coronaviruses. For example, the herb Phyllanthus niruri, well known for its immunomodulatory properties, has been proven to possess immunomodulatory activity in tuberculosis infection, evidenced by increased proliferation of mononuclear cells, enhanced phagocytic activity, and elevated nitric oxide release by macrophages (Putri et al. 2018).

Excessive free radicals produced from the destruction of microorganisms by macrophages, as part of the immune response, can further lead to lipid peroxidation. Malondialdehyde (MDA), a key by-product of lipid peroxidation, interacts with lipids, proteins, and nucleic acids—leading to enzyme dysfunction, structural damage, membrane instability, and ultimately, cell death (Ayala et al. 2014; Forrester et al. 2018). High concentrations of MDA indicate oxidative processes in cell membranes. Erythrocyte and plasma MDA levels have been used as markers of tissue damage caused by free radicals in in vivo studies. Chemically, MDA is stable, making it more commonly used as an oxidative stress marker compared to other compounds (Grotto et al. 2009). Naturally, the human body has an endogenous antioxidant system

neutralize and scavenge free radicals, such (CAT) catalase and superoxide dismutase (SOD). Superoxide dismutase acts by converting O2- into H2O2 and oxygen, which are subsequently detoxified by CAT and glutathione peroxidase (GPx). Higher SOD activity reduces ROS levels, lowering oxidative stress. Meanwhile, GPx uses reduced glutathione (GSH) to convert H₂O₂ into water (H₂O), preventing ROS build-up. Thus, low GSH/GPx levels causing the increase of oxidative stress (Ighodaro and Akinloye 2018; Zhao et al. 2019). An excessive production of ROS can result in the oxidation of proteins (Nouri et al. 2021). The ROS are primarily generated in intracellular organelles such as the mitochondria. endoplasmic reticulum. peroxisomes, nucleus, cytosol, and the extracellular matrix (Javaid and Jabeen 2025).

The antioxidant potentials of secondary metabolites in Avicennia plants may be attributed to the following mechanisms; phenolics donate hydrogen atoms or electrons to neutralize free radicals, thereby stopping chain reactions causing oxidative damage to cells. Some phenolics (like flavonoids and tannins) can chelate metal ions like Fe²⁺ and Cu²⁺, which prevent radical generation. Additionally, phenolics can enhance the activity of various antioxidant enzymes (Pannucci et al. 2023; Zhang et al. 2022). In the present review, Avicennia plants are shown to enhance the production of GSH, SOD, GPx, and CAT, while simultaneously suppressing the production of NO, lipid peroxidation, MPO, MDA, and H₂O₂ in in vitro and in vivo studies (Al-Jaghthmi et al. 2020; Okla et al. 2019; Sadoughi and Hosseini 2020; Vellimalai et al. 2019; Victoria et al. 2012; Yassien et al. 2021; Yi et al. 2020).

Inflammation and oxidative stress are closely linked, with a rise in one often triggering an increase in the other (Abbasnia et al. 2024). Figure 4 implies that the anti-inflammatory and antioxidant potentials of *Avicennia* species are closely interconnected in pathophysiological

processes. The antioxidant properties of Avicennia are demonstrated through the inhibition of lipid peroxidation and myeloperoxidase, as well as the regulation of antioxidant production or activity and glutathione-related parameters. Additionally, the immunomodulatory effects of Avicennia include suppressing the production of cytokines, stimulating lymphocyte proliferation, and reducing clinical symptoms in animal models. The inflammatory signaling pathways affected by Avicennia involve the induction of the mTORpathway. Studies Avicennia species have highlighted their notable anti-inflammatory and antioxidant properties, which support a range of therapeutic uses.

The limitation of this review is the inconsistent presentation of information across studies, particularly in those with "unclear" or "high" risk of bias in their design. This raises the possibility that some findings from the included studies may have been misinterpreted by the authors. Challenges in accessing specific data were not entirely accounted for, and not all journals offer consistent or comprehensive information. Limited studies were found to isolate active compounds from Avicennia plants using a phytochemical approach. further isolation Therefore, of secondary metabolites contained in Avicennia is still needed, such as utilizing bioassay-guided isolation approach along with the signaling pathways involved. Future clinical trials on human with clearlydefined symptoms are essential to assess the therapeutic potential of the Avicennia genus, as animal studies cannot fully replace clinical trials in determining therapeutic efficacy. Additionally, it is crucial to investigate and address potential adverse interactions in polypharmacy and polyherbal formulations involving Avicennia.

Avicennia species, particularly Avicennia marina, Avicennia alba, Avicennia schaueriana, and Avicennia officinalis, have been reported to possess

Dinanti et al.

anti-inflammatory and antioxidant properties in preclinical studies, supporting their traditional use in folk medicine for treating inflammation. Additional preclinical research, including a deeper investigation into the mechanisms of action and pharmacokinetic studies on bioactive

compounds isolated from *Avicennia* plants is needed before advancing to clinical trials. *Avicennia* genus holds significant potential for development as a medicinal agent for immunomodulatory supplements targeting oxidative stress and inflammation.

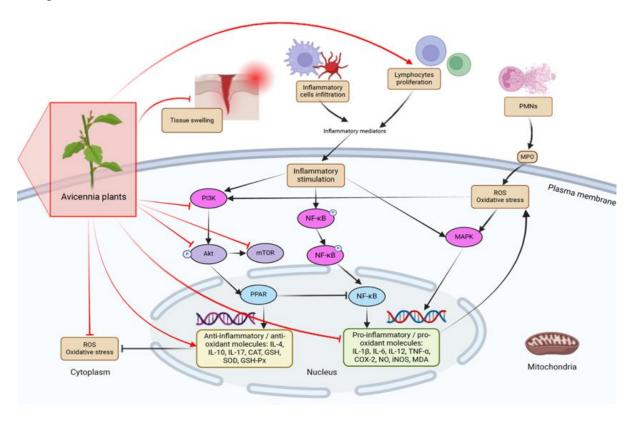


Figure 4. A schematic illustrating signaling pathways affected by *Avicennia* species. (PMN: Polymorphonuclear; NF-kB: Nuclear factor kappa B; PPAR: Peroxisome proliferator-activated receptor; *mTOR*: mammalian target of rapamycin; IL: Interleukin; CAT: Catalase; GSH: Glutathione; SOD: Superoxide dismutase; GSH-Px: GSH-Peroxidase; TNF: Tumor necrosis factor; COX: Cyclooxygenase; NO: Nitric oxide; iNOS: inducible nitric oxide synthase; MDA: Malondialdehyde).

Acknowledgment

The authors thank Indonesia Endowment Fund for Education Agency (Lembaga Pengelola Dana Pendidikan) for funding this research through National Regular Doctoral Scholarship (*Beasiswa Reguler Doktoral Dalam Negeri*) with contract number 0002459/TRP/D/19/lpdp2023.

Conflicts of interest

The authors have declared that there is no conflict of interest.

References

Abbas A, Lichtman A, Pillai S (2015) Basic immunology: functions and disorders of the immune system. , 5 edn. Elsevier Health Sciences

Abbasnia V, Eslimi Esfahani D, Foadoddini M, Oryan SK, MR (2024) The therapeutic potential of Melissa officinalis L. hydroalcoholic extract and rosmarinic acid in a rat asthmatic model: A study on anti-inflammatory and antioxidant effects. Avicenna J Phytomed 14:252-267

Acosta-Martinez M, Cabail M (2022) The PI3K/Akt pathway in meta-inflammation. Int J Mol Sci 23:15330

- Al-Jaghthmi O, Zeid I, Al-Ghamdi K, Heba H, Ahmad M (2020) Antihyperglycemic, Antioxidant and Antiapoptotic Effect of Rhizophora Mucronata and Avicennia Marina in Streptozotocin-induced Diabetic Rats. Medical Archives 74:421–427 doi:10.5455/medarh.2020.74.421-427.
- Allen D, McWhinney B (2019) Quadrupole time-of-flight mass spectrometry: a paradigm shift in toxicology screening applications. Clin Biochem Rev 40:135
- Almeida N, Silva F, Carneiro A, Lima E, Barcellos J, Furtado S (2021) Libidibia ferrea (jucá) anti-inflammatory action: A systematic review of in vivo and in vitro studies. . PLoS One 16: e0259545
- Arab Z, Salmani H, Marefati N, et al. (2023)
 Protective effects of hydro-alcoholic
 extract of Zataria multiflora on
 lipopolysaccharide-induced inflammation
 and oxidative stress in rat liver. Avicenna
 J Phytomed 13:531-540
- Athalye-Jape G (2021) Systematic Reviews of Animal Studies. In: Principles and Practice of Systematic Reviews and Meta-Analysis. Cham Springer International Publishing 177–188
- Ayala A, Muñoz M, Argüelles S (2014) Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 1:360438 doi:10.1155/2014/360438
- Azwanida N (2015) A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med aromat plants 4:412–2167
- Beheshtimanesh Z, Rajaei Z (2023) Neuroprotective effects of sesamol against LPS-induced spatial learning and memory deficits are mediated via antiinflammatory and antioxidant activities in the rat brain. Avicenna J Phytomed 13:213-222
- Beula J, Gnanadesigan M, Rajkumar P, Ravikumar S, Anand M (2012) Antiviral, antioxidant and toxicological evaluation of mangrove plant from South East coast of India. Asian Pac J Trop Biomed 2:S352– S357
- Chen K, Ma B, Wang Y, et al. (2014) SYRCLE's risk of bias tool for animal studies. Chinese J Evidence-Based Med 14:1281–1285 doi:10.7507/1672-2531.20140206

- Dauncey E, Irving J, Allkin R, Robinson N (2016) Common mistakes when using plant names and how to avoid them. Eur J Integr Med 8:597
- Desiani E, Mardiana T, Madusari BD, Hidayat F (2022) Analgesic Activity Test of Mangrove Leaf Extract (Rhizophora mucronata) in Mice Induced with Acetic Acid Using the Writhing Reflex Method. Cendekia J Pharm 6:307-317
- Duchman K, Lemmex D, Patel S, Ledbetter L, Garrigues G, Riboh J (2019) The effect of non-steroidal anti-inflammatory drugs on tendon-to-bone healing: a systematic review with subgroup meta-analysis. . Iowa Orthop J 39:107
- ElDohaji L, Hamoda A, Hamdy R, Soliman S (2020) Avicennia marina a natural reservoir of phytopharmaceuticals: Curative power and platform of medicines. J Ethnopharmacol 263:113-179
- Fahrurrozi A, Madusari B, Linayati L, Ilyas T (2024) The Effect of Rhizophora mucronata Leaf Extract on the Hematology of Nile Tilapia (Oreochromis niloticus) Challenged with Aeromonas hydrophila. J Perikan Unram, 14:730-741
- Fang X, Chen X (2013) Structure elucidation and immunological activity of a novel pectic polysaccharide from the stems of Avicennia marina. Eur Food Res Technol 236:243–248 doi:10.1007/s00217-012-1877-6
- Forrester S, Kikuchi D, Hernandes M, Xu Q, Griendling K (2018) Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research 122:877–902
 - doi:10.1161/CIRCRESAHA.117.311401
- Gandomani M, Malati E (2014) Evaluation of protective efficacy of Avicennia marina (forssk.) vierh leaves against complete freund's adjuvant-induced arthritis in wistar. Iran J Pharm Res 13:945–952
- Glaviano A, Foo A, Lam H, et al. (2023) PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 22:138 doi:10.1186/s12943-023-01827-6
- Grotto D, Santa Maria L, Valentini J, et al. (2009) Importance of the lipid peroxidation biomarkers and methodological aspects for malondial dehyde quantification. Quimica Nova 32:169–174 doi:10.1590/S0100-

- 40422009000100032
- Hawkins P, Stephens L (2015) PI3K signalling in inflammation. Biochim Biophys Acta -Mol Cell Biol Lipids, 1851:882–897 doi:10.1016/j.bbalip.2014.12.006
- Hira P (2022) Overview of immune system. In: An interplay of cellular and molecular components of immunology. CRC Press:1-26
- Ibrahim H, Abdel-Latif H, Zaghloul E (2022) Phytochemical composition of Avicennia marina leaf extract, its antioxidant, antimicrobial potentials and inhibitory properties on Pseudomonas fluorescens biofilm. Egypt J Aquat Res 48:29–35
- Ighodaro O, Akinloye O (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med 54:287–293 doi:10.1016/j.ajme.2017.09.001.
- Ingle K, Deshmukh A, Padole D, Dudhare M, Moharil M, Khelurkar V (2017)
 Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. J
 Pharmacogn Phytochem 6:32–36
- Javaid F, Jabeen Q (2025) Protective effects of Indigofera argentea against acetic acidinduced inflammatory bowel disease are mediated by modulating antioxidant and inflammatory mediators. Avicenna J Phytomed 15:964-980
- Karina, Yuliati I, Sondang M (2016) The Level of Tannin Areca Nut Seed (Areca Catechu L) Based on The Heating Length and Dust Size. J Hutan Lestari 4:119–127
- Kosoe E, Achana G, Ogwu M (2024) Regulations and policies for herbal medicine and practitioners. In: Herbal Medicine Phytochemistry: Applications and Trends. Cham Springer International Publishing:1-23
- Kumar D, Jayaseelan, Senthil, Mani (2016) Evaluation of Hepatoprotective and Antioxidant Activity of Avicennia alba (Blume) on Paracetamol-Induced Hepatotoxicity in Rats. In: Innovare Journal of Ayurvedic Sciences 3:19-22
- Kusmana C (2018) Mangrove plant utilization by local coastal community in Indonesia. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing: 12028

- Kusmana C, Sukristijiono S (2016) Mangrove resource uses by local community in Indonesia. Journal Nat Resour Environ Manag 6:217
- Madusari B, Fitri A, Gunawan M, Mardiana T (2024) Tidal Flood Mitigation Model Using the Life Cycle Approach (LCA) in Coastal Areas of Pekalongan City. KnE Soc Sci
- Mangrio A, Rafiq M, Naqvi S, Junejo S, Mangrio S, Rind N (2016) Evaluation of phytochemical constituents and antibacterial potential of avicennia marina and rhizophora mucronata from indus delta of Pakistan. Pakistan J Biotechnol 13:259–265
- Manning B, Toker A (2017) AKT/PKB Signaling: Navigating the Network. Cell 169:381–405 doi:10.1016/j.cell.2017.04.001
- Mitra S, Islam F, Das R, et al. (2022)
 Pharmacological Potential of Avicennia alba Leaf Extract: An Experimental Analysis Focusing on Antidiabetic, Antiinflammatory, Analgesic, and Antidiarrheal Activity. Biomed Res Int doi:10.1155/2022/7624189
- Moher D, Liberati A, Tetzlaff J, Altman D (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8:336–341
- Mukherjee P (2019) Quality control and evaluation of herbal drugs: Evaluating natural products and traditional medicine. Elsevier
- Muzamil A, Tahir H, Ali S, Liaqat I, Ali A, Summer M (2021) Inflammatory process and role of cytokines in inflammation: An overview. Punjab Univ J Zool 36
- Nouri A, Salehi-Vanani N, Heidarian E (2021) Antioxidant, anti-inflammatory and protective potential of gallic acid against paraquat-induced liver toxicity in male rats. Avicenna J Phytomed 11:633-644
- Nova FS, Chasani S, Hussanna A, et al. (2020) Tender Coconut Water Inhibits the Process of Lipid Peroxidation, Reduce Glucose Levels, and Increase Plasma Insulin in Pregnant Diabetic Rats. Pharmacogn J 12: 162-7 doi: 10.5530/pj.2020.12.24
- Okla M, Alamri S, Alatar A, et al. (2019) Antioxidant, Hypoglycemic, and Neurobehavioral Effects of a Leaf Extract of Avicennia marina on Autoimmune Diabetic Mice. Evidence-based

- Complement Altern Med 1:1263260 doi:10.1155/2019/1263260
- Pannucci E, Spagnuolo L, De Gara L, Santi L, Dugo L (2023) Phenolic compounds as preventive and therapeutic agents in diabetes-related oxidative stress, inflammation, advanced glycation end-products production and insulin sensitivity. Discov Med 35:178
- Papi S, Ahmadizar F, Hasanvand A (2019) The role of nitric oxide in inflammation and oxidative stress. Immunopathol Persa 5:3-6 doi:10.15171/ipp.2019.08
- Patil A (2020) Plant Secondary Metabolites: Isolation, Characterization & Biological Properties. Studera Press
- Peng Y, Wang Y, Zhou C, Mei W, Zeng C (2022) PI3K/Akt/mTOR pathway and its role in cancer therapeutics: are we making headway? . Front Oncol 12:819128
- Pereira BJ, Nascimento SM, Campos LT, et al. (2019) Gastroprotective effect of ethyl acetate extract from Avicennia schaueriana Stapf & Leechman and underlying mechanisms.
- Biomed Pharmacother 112:1–10 doi:10.1016/j.biopha.2019.01.043
- Putri D, Ning R, Marsetyawan H, Haryana S (2018) Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient in vitro study. Nat Prod Res 32:463–467 doi:10.1080/14786419.2017.1311888
- Qurrohman T, Basyuni M, Hasibuan P (2020)
 Polyisoprenoids from avicennia marina induces on p13k, akt1, mammalian target of rapamycin, egfr, and p53 gene expression using reverse transcription-polymerase chain reaction Open Access Maced J Med Sci 8:146–152 doi:10.3889/oamjms.2020.3328
- Rahman M (2021) The Effect of Dosage of Mangrove Leaf Extract Avicennia Marina on The Viability Of Hela Cells. J Stem Cell Res Tissue Eng 5:41 doi:10.20473/jscrte.v5i1.29384
- Rege A, Juvekar P, Juvekar A (2012) In vitro anti-lipid peroxidation and anti-arthritic activities of avicennia officinalis. J Nat Remedies 12:157–161
- Ritskes-Hoitinga M, Pound P (2022) The role of systematic reviews in identifying the limitations of preclinical animal research, 2000–2022: part 1. J R Soc Med 115:186-

- 192
- Rivera D, Allkin R, Obón C, Alcaraz F, Verpoorte R, Heinrich M (2014) What is in a name? The need for accurate scientific nomenclature for plants. J Ethnopharmacol 152:393–402
- Sadoughi S, Hosseini S (2020) Effects of hydroalcoholic leaf extract of avicennia marina on apoptotic, inflammatory, oxidative stress, and lipid peroxidation indices and liver histology of type 1 diabetic rats. Hepat Mon doi:10.5812/hepatmon.99454
- Saenger P, Ragavan P, Sheue C, López-Portillo J, Yong JWH, Mageswaran T (2019) Mangrove Biogeography of the Indo-Pacific. In Sabkha Ecosystems. Cham 6:379-400 doi:https://doi.org/10.1007/978-3-030-04417-6 23
- Sharma J, Al-Omran A, Parvathy S (2007) Role of nitric oxide in inflammatory diseases. . Inflammopharmacology 15:252-259 doi:10.1007/s10787-007-0013-x
- Soudkhah S, Keyghobadi S, Shadboorestan A, et al. (2025) The hydroalcoholic extract of Nasturtium officinale protectively inhibits apoptotic and inflammatory pathways in hepato- and nephrotoxicity: An in vivo study. Avicenna J Phytomed 15:1177-1192.
- Srikanth S, Lum YSK, Chen Z (2016) Mangrove root: adaptations and ecological importance. Trees 30(2):451-465
- Statistik BP (2021) Berita Resmi Statistik.
- Sukhramani P, Patel P (2013) In-vitro biological screening of Avicennia marina for Anticancer activity. Res J Pharmacol Pharmacodyn 5:297–301
- Sumithra M, Kumar J, Kancharana V (2011) Influence of Methanolic Extract of Avicennia officinalis leaves on Acute, Subacute and Chronic Inflammatory Models. Int J PharmTech Res 3:763–768
- Sura S, Anbu J, Basha S, Uma MB (2011) Antiulcer effect of ethnolic leaf extract of Avicennia officinalis. . Pharmacologyonline 3:12-19
- Susanty FB (2016) Comparison of Maceration and Reflux Extraction Methods on Phenolic Content of Corn Cob (Zea mays L.) Extract. Conversion:87-93
- Teschke R, Eickhoff A (2015) Herbal hepatotoxicity in traditional and modern medicine: actual key issues and new

- encouraging steps. Front Pharmacol 6:72
- Thirunavukkarasu P, Ramanathan T, Ramkumar L, Shanmugapriya R, Renugadevi G (2011) The antioxidant and free radical scavenging effect of avicennia officinalis. J Med Plant Res 5:4754–4758
- Tilley D, Vallejo R, Vetri F, Platt D, Cedeno D (2022) Activation of Neuroinflammation via mTOR Pathway is Disparately Regulated by Differential Target Multiplexed and Traditional Low-Rate Spinal Cord Stimulation in a Neuropathic Pain Model. J Pain Res 15:2857–2866 doi:10.2147/JPR.S378490
- Torrealba N, Vera R, Fraile B, Martinez-Onsurbe P, Paniagua R, Royuela M (2020) TGF-β/PI3K/AKT/mTOR/NF-kB pathway. Clinicopathological features in prostate cancer. The Aging Male
- Tran L, Tam D, Elshafay A, Dang T, Hirayama K, Huy N (2021) Quality assessment tools used in systematic reviews of in vitro studies: A systematic review. BMC Med Res Methodol 21:101
- Upton R, David B, Gafner S, Glasl S (2020)
 Botanical ingredient identification and quality assessment: strengths and limitations of analytical techniques. Phytochem Rev 19:1157–1177
- Vakkalagadda R, Lankalapalli S (2020) Evaluation of hepatoprotective activity of ochna obtusata extract on paracetamol induced hepatotoxicity in rats. Int J Pharm Res 12:4886–4894 doi:10.31838/ijpr/2020.12.04.659
- Vellimalai K, Dinesh KG, Jayaseelan K (2019) Hepatoprotective and antioxidant activity of ethanolic leaves extract of Avicennia marina against alcohol-induced liver toxicity in rats. J Drug Deliv Ther 9:403– 408 doi:10.22270/jddt.v9i4-a.3500
- Victoria RC, Vinod PV, Guruvayoorappan C (2012) Effect of marine mangrove avicennia marina (Forssk.) vierh against

- acetic acid-induced ulcerative colitis in experimental mice. J Environ Pathol Toxicol Oncol 31:179–192 doi:10.1615/JEnvironPatholToxicolOncol .v31.i2.90.
- Vivier E, Artis D, Colonna M, et al. (2018) Innate Lymphoid Cells: 10 Years On. Cell 174:1054–1066 doi:10.1016/j.cell.2018.07.017
- Wahyuningsih M, Rakhwamati R (2024) Discovery and Development of Drug Compounds from Natural Sources, 1 edn. UGM Press
- Wang R, Lan C, Benlagha K, et al. (2024) The interaction of innate immune and adaptive immune system. . MedComm 5:e714
- Yassien E, Hamed M, Abdelmohsen U, Hassan H, Gazwi H (2021) In vitro antioxidant, antibacterial, and antihyperlipidemic potential of ethanolic Avicennia marina leaves extract supported by metabolic profiling Environ Sci Pollut Res 28:27207–27217 doi:10.1007/s11356-021-12496-7
- Yi Xx, Li Jy, Tang Zz, et al. (2020) Marinoid J, a phenylglycoside from Avicennia marina fruit, ameliorates cognitive impairment in rat vascular dementia: a quantitative iTRAQ proteomic study. Pharm Biol 58:1211–1220 doi:10.1080/13880209.2020.1837187
- Zhang L, Zhang H, Tang L, Hu X, Xu M (2022) Isolation, characterization, antioxidant activity, metal-chelating activity, and protein-precipitating capacity of condensed tannins from plum (Prunus salicina) fruit. Antioxidants 11:714
- Zhao L, Zong W, Zhang H, Liu R (2019) Kidney Toxicity and Response of Selenium Containing Protein-glutathione Peroxidase (Gpx3) to CdTe QDs on Different Levels. Toxicol Sci 168:201– 208 doi:10.1093/toxsci/kfy297

20