

Short-Communication

Ginger supplementation in children with oligoarticular juvenile idiopathic arthritis: A triple-blind randomized clinical trial

Mahsa Bozorgvar¹, Abbas Akhgari^{2,3}, Abdolreza Malek⁴, Motahareh Boozari⁵, Zahra Abbasi-shaye⁶, Hossein Shahdadi Sardou^{2,7}, Zinat Heidari^{1,*}

Article history:

Received: Feb 18, 2025 Received in revised form: Aug 16, 2025 Accepted: Aug 17, 2025 Epub ahead of print

* Corresponding Author:

Tel: 0985131801584 Fax: 0985138823251 heidarizn@mums.ac.ir

Keywords:

Ginger
Gingerol
Shogaol
Juvenile idiopathic arthritis
Oligoarthritis, children
Pediatric

Abstract

Objective: This study aimed to investigate the effect of ginger supplementation on treatment responses in children with oligoarticular juvenile idiopathic arthritis (oligo-JIA).

Materials and Methods: A total of forty children between the ages of 6 and 16 years with oligo-JIA were randomly assigned to receive either a ginger capsule (containing 250 mg of powdered *Zingiber officinale* rhizomes) or a placebo twice daily for three months, along with standard treatment. The response to therapy was measured using the American College of Rheumatology Pediatric 30, 50, 70, and 90 response criteria (ACR-Pedi 30, 50, 70, and 90) after three months of supplementation.

Results: ACR-Pedi 30, 50, 70, and 90 responses were significantly higher among those receiving ginger supplement (p<0.001, p<0.001, p<0.001, and p=0.001, respectively).

Conclusion: In this study, ginger supplementation improved ACR-Pedi 30, 50, 70 and 90 responses in pediatric patients with oligo-JIA. Given its safety profile and anti-inflammatory and immunomodulatory properties, ginger supplementation may enhance therapeutic responses in this clinical setting. However, due to certain limitations within our study, further research is essential to confirm these promising findings.

Please cite this paper as:

Bozorgvar M, Akhgari A, Malek A, Boozari M, Abbasi-shaye Z, Shahdadi Sardou H, Heidari Z. Ginger supplementation in children with oligoarticular juvenile idiopathic arthritis: A triple-blind randomized clinical trial. Avicenna J Phytomed, 2025. Epub ahead of print.

Introduction

Juvenile idiopathic arthritis (JIA) is the most prevalent form of chronic inflammatory joint disease affecting children under the age of 16. It affects approximately one in every 1000 children (Al-Mayouf et al. 2021; Onel et al. 2022)). The primary clinical manifestation of JIA is persistent joint inflammation resulting from the accumulation of synovial fluid and thickening of the synovial membrane. The

¹Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran ²Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran ³Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

⁴Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ⁵Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran ⁶Akbar Clinical Research and Development Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ⁷Innovation and Ideation Center, Health Science and Technology Park, Mashhad University of Medical Sciences, Mashhad, Iran

Bozorgvar et al.

synovial tissue becomes inflamed and hyperplastic due to excessive proliferation of synoviocytes and infiltration of various immune cells, particularly T-cells, B-cells, natural killer cells, macrophages, dendritic cells, plasma cells, and neutrophils. Additionally, the inflamed synovium secretes excess synovial fluid that contains inflammatory cells and cytokines. These changes can result in joint destruction and systemic complications (Zaripova et al. 2021).

JIA, as a heterogeneous disorder, is categorized into six subtypes: systemic arthritis, polyarthritis, oligoarthritis, enthesitis-related arthritis, psoriatic arthritis, and undifferentiated arthritis (Onel et al. 2022; Petty et al. 2004). This classification is based on the pattern of joint

involvement, extra-articular symptoms and systemic features (Table 1) (Petty et al. 2004; Zaripova et al. 2021). Among these, oligoarticular JIA (oligo-JIA) is the most common, representing for approximately 50% of all cases (Onel et al. 2022). According to the criteria stablished by the American College of Rheumatology (ACR) International League and the Associations for Rheumatology (ILAR), oligo-JIA is defined as the presence of arthritis in up to four joints. It typically affects large joints, predominantly knees and ankles, in an asymmetrical pattern (Onel et al. 2022; Petty et al. 2004).

The purpose of this study was to evaluate the potential effect of ginger supplementation on treatment responses in children with oligo-JIA.

Table 1. JIA classification categories (Onel et al. 2022; Petty et al. 2004; Zaripova et al. 2021)

~ .	Diagnostic criteria				
Subtype	Arthritis	Extra-articular manifestations and systemic features Fever of at least 2 weeks duration (daily for at least 3 days) and			
Systemic arthritis	Presence of arthritis in one or more joints	At least one of the following findings: 1. Evanescent 2. Erythematous rash 3. Hepatomegaly or splenomegaly 4. Lymph node enlargement 5. Serositis			
Polyarthritis	Presence of arthritis in five or more joints	This subtype is further divided according to the presence of absence of RF: 1. Polyarthritis RF negative 2. Polyarthritis RF positive			
Oligoarthritis	Presence of arthritis in one to four joints during the first 6 months This subtype is further divided to two subclasses: 1. persistent (children with one to four joints throughout the disease course) 2. Extended (children with five or more joints after first 6 months)	-			
Enthesitis- related arthritis	Presence of arthritis and enthesitis, or arthritis alone, or enthesitis alone	Two or more of the following: 1. Sacroiliac joint tenderness 2. Lumbosacral inflammatory pain 3. Positive HLA-B27 4. First-degree relative with acute anterior uveitis 5. Ankylosing spondylitis 6. Inflammatory bowel disease with sacroiliitis 7. Reactive arthritis 8. Acute anterior uveitis 9. Onset of arthritis in males >6 years of age			
Psoriatic arthritis	Presence of arthritis	Two or more of the following: 1. Psoriasis in a first-degree relative 2. Dactylitis 3. Appropriate fingernail abnormalities (eg, pitting or onycholysis)			
Undifferentiated arthritis	Presence of arthritis that either does not fulfill one of the above categories due to incomplete features or meets the criteria for more than one category	-			
RF, rheumatoi	d factor; HLA, human leukocyte antigen				

Materials and Methods Study design

This triple-blind, placebo-controlled, randomized clinical trial was conducted in the rheumatology clinic of Akbar Hospital, a tertiary referral teaching hospital affiliated to Mashhad University of Medical Sciences between March 2022 and March 2024.

Ethical considerations

The study received approval from the Institutional Review Board and Ethics Committee of Mashhad University of Medical Sciences in Mashhad, Iran (approval code: IR.MUMS.REC.1399.460). Additionally, it was registered as a clinical trial on December 8, 2021, with the Iranian Registry of Clinical Trials (http://www.irct.ir), under the identification number IRCT20191221045837N4.

Study protocol

Children aged 6-16 years with diagnosis of oligo-JIA who were referred to the rheumatology clinic were recruited. The diagnosis was established in accordance with the ACR guideline (Onel et al. 2022). Patients (or their parents) who declined to provide research authorization, as well as individuals with diabetes mellitus (HbA1C >6.5 g/dl), medical history cardiovascular, renal, gastrointestinal, hepatic, biliary or other rheumatic disorders (except for JIA), or recent (within the past three months) or ongoing use of ginger or other herbal supplements were not included to the study. Patients who did not complete the follow-up were excluded from the study. Parents were asked to supervise the child's correct use of the medication, and this supervision was evaluated by the pharmacist during the study.

Eligible children were randomly assigned to receive either ginger supplement or placebo. All participants received standard medical management for oligo-JIA during the study. intervention group received a ginger capsule (containing 250 mg of powdered Z. officinale rhizomes) twice daily for three months. The control group received placebo capsules identical in appearance and quantity. These capsules were prepared by Gol Daru Pharmaceutical Company (Isfahan, Iran) in 2022. The content of capsules was authenticated through High-Performance Liquid Chromatography (HPLC) analysis, based on gingerol the Department content, by Pharmacognosy at Mashhad University of Medical Science.

Randomization and blinding

used permuted block the randomization method (block size of four) to ensure balanced allocation of patients to each group. A computer-generated list of random allocation sequences was prepared. To maintain blinding, both ginger and placebo capsules were produced in a way to look identical and were similarly packaged, labeled as A and B respectively (produced by Gol Daru Pharmaceutical Company). Included patients received their capsules (labeled A or B) according to the allocation Patient evaluations sequence. treatment were conducted by a pediatric rheumatologist and a pharmacy student, both of whom were unaware of the patients' group assignments.

Sample size

Given the lack of clinical trials exploring the anti-inflammatory properties of ginger in patients with Oligo-JIA, this research was designed as a pilot study. The sample size was estimated at 20 participants, based on the non-central t-distribution (NCT) method and following the rules of thumb, aiming for an 80% statistical power, a standardized effect size of 0.2, and a significance level of p < 0.05 for each treatment group (Whitehead et al. 2016).

Patient assessment and data collection

The demographic characteristics of the patients, including sex, age, and weight, as

well as the severity of the disease (both at baseline and three months later), possible side effects, and concurrent medications were recorded. The ACR-Pedi 30 response was considered the primary outcome. Secondary outcomes involved ACR-Pedi 50, 70 and 90 responses and adverse events.

The ACR-Pedi 30, 50, 70 and 90 criteria, which are valid assessment tools, have demonstrated high sensitivity (100%) and specificity (85%) in defining disease improvement (Consolaro et al. 2016; Trincianti et al. 2021). As a result, we employed these criteria to evaluate patient responses to therapy in our study. An ACR-Pedi 30 response is characterized by a minimum of 30% improvement in at least three of the six core disease measures from baseline, without more than one variable worsening by over 30%. The core criteria include: 1. Physician global assessment of disease activity (measured using a 0-10 cm Visual Analogue Scale [VAS], with 0 representing the best score); Patient/parent overall assessment of wellbeing (also based on a 0-10 cm VAS); 3. Functional ability; 4. Number of joints with active arthritis; 5. Number of joints with limited range of motion (ROM); and 6. Erythrocyte sedimentation rate (ESR) level (measured by the Westergren method). Similarly, ACR-Pedi 50, 70 and 90 responses are defined as achieving at least 50%. 90% 70% and improvement, respectively, in at least three of these core variables, with no more than one variable worsening by over 30% (Consolaro et al. 2016; Trincianti et al. 2021).

Throughout the study, patients were closely monitored for the occurrence of any adverse events. When an adverse reaction was suspected, the Naranjo Adverse Drug Reaction Probability Scale was applied to

determine the likelihood of a causal relationship.

Statistical analyses

All statistical analyses were performed using SPSS Statistics for Windows, version 22. Analyses adhered to the intention-totreat (ITT) approach. The Kolmogorov-Smirnov test assessed the normality of continuous variable distributions. Continuous data are presented as means with standard deviations (SD) or medians with interquartile ranges [IQR], depending on distribution. Categorical data are expressed as counts and percentages. To compare continuous variables, either the independent samples t-test or the Mann-Whitney U test was used, based on data distribution. Categorical variables were compared using the chi-square (χ^2) test or Fisher's exact test. A *p*-value less than 0.05 was deemed statistically significant.

Results

Out of 180 children initially screened, only 40 patients met the inclusion criteria and participated in the study. These participants were randomly divided into two groups: one receiving a ginger supplement and the other a placebo, both in addition to the standard treatment for oligo-During the trial, two children JIA. withdrew due to mild skin rashes (one from each group). Ultimately, 38 children completed the study as shown in Figure 1. The average age of the participants was 10.32 years (SD = 2.94), with 20 of them (50%) being male. Table 2 provides a summary of their demographic data and initial medical management, revealing no significant differences between two groups.

Ginger in juvenile idiopathic arthritis

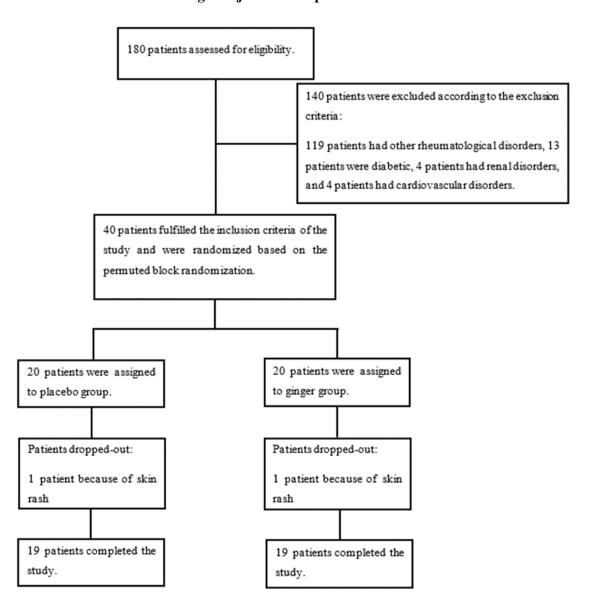


Figure 1. Consort flow chart of the study

Table 2. Demographic characteristics of patients and their initial medical management

Variable, Mean (SD) or n (%)	Placebo group $(n = 20)$	Ginger group $(n = 20)$	p-value					
Age, years	10.65 (3.01)	10 (2.91)	0.49 ^a					
Sex								
Male	8 (40)	12 (60)	0.24h					
Female	12 (60)	8 (40)	0.34 ^b					
Weight, kg	29.6 (1.26)	28.2 (1.51)	0.26^{a}					
Initial medical management of oligo-JIA*								
Methotrexate dose (mg/weak)	14.2 (1.58)	14.1 (1.26)	0.16^{a}					
Naproxen dose (mg/day)	420.8 (3.25)	421 (2.87)	0.26^{a}					
Prednisolone dose (mg/day)	13.9 (1.98)	13.6 (1.69)	0.14 ^a					

^{*}All included patients received standard medical management of oligo-JIA according to the ACR guideline. a independent samples t-test. $^b\chi 2$ test

Bozorgvar et al.

Throughout the study, we monitored clinical symptoms and laboratory parameters, with the findings detailed in Table 3. After three months, all core criteria of the ACR-Pedi responses showed significant improvement in the ginger group. Finally, the ACR-Pedi 30, 50, 70 and 90 responses were measured and compared between the groups. As shown in Table 4, the ACR-Pedi 30, 50, 70 and 90 responses were substantially higher in the ginger group (p<0.001, p<0.001, p<0.001, and p=0.001, respectively).

Both groups tolerated the treatment effectively, with no serious adverse reactions reported. Only two participants (one from each group) developed mild skin rashes localized to the chest and face. Overall, the incidence of side effects was not significantly different between the groups (p = 0.55). We assessed the Narenjo score for both patients, which ranged from 2 to 4. This suggests a low possibility that the rashes were caused by the trial medications. Given that these skin reactions were mild and occurred in only one patient within each group, and considering the Narenjo score, our findings demonstrate that daily intake of 500 mg of ginger powder over three months is safe for children aged 6-16 years old.

Table 3. Changes in clinical findings and laboratory markers of patients during the study period in the two groups

	Placebo group		Ginger group		
Variable, Median [IQR]	Baseline	After three	Baseline	After three	p-value
	(n = 20)	months (n = 19)	(n = 20)	months $(n = 19)$	
Physician global assessment	4 [4-5.75]	4 [3-5]	5 [4-6.75]	1 [0.0-1]	<0.001a
Patient/parent global assessment	4.5 [4-5]	4 [3-5]	5 [4-6]	0.0 [0.0-1]	<0.001a
Functional ability	1.33 [1.33-1.92]	1.33 [1.33-2.33]	2.33 [1.67-3.25]	1 [0.33-1.33]	0.001^{a}
Number of joints with active arthritis	1 [1-2]	1 [1-2]	1 [1-2]	0.0 [0.0-1]	$<0.001^a$
Number of joints with reduced ROM	1 [1-1]	1 [1-2]	1 [1-2]	0.0 [0.0-1]	0.01^{a}
ESR level, mm/hr	7 [4.25-14.5]	14 [10-23]	18.5 [10.25-43.5]	4 [2-15]	0.003^{a}

ESR, erythrocyte sedimentation rate; IQR, interquartile range; ROM, range of motion. ^aMann-Whitney U test

Table 4. ACR-Pedi 30, 50, 70, and 90 responses of patients after 3 months

*An ACR-Pedi 30 response is characterized by a minimum of 30% improvement in at least three of the six core disease measures from baseline, without more than one variable worsening by over 30%. The core criteria include 1. Physician global assessment of disease activity (measured using a 0-10 cm Visual Analogue Scale [VAS], with 0 representing the best score); 2. Patient/parent overall assessment of well-being (also based on a 0-10 cm VAS); 3. Functional ability; 4. Number of joints with active arthritis; 5. Number of joints with limited range of motion (ROM); and 6. Erythrocyte sedimentation rate (ESR) level. Similarly, ACR-Pedi 50, 70 and 90 responses are defined as achieving at least 50%, 70% and 90% improvement, respectively, in at least three of these core variables, with no more than one variable worsening by over 30%. ax2 test

Discussion

Based on the findings of this study, ginger supplementation (one capsule containing 250 mg of ginger powder twice daily for three months), along with standard

treatment for oligo-JIA, improved both clinical manifestations and laboratory markers of the disease in children. Additionally, children receiving ginger showed significantly higher ACR-Pedi 30, 50, 70 and 90 responses.

Ginger has long been used to prevent and alleviate nausea and vomiting in pediatric populations (Dupuis and Nathan 2003; Essawy et al. 2021; Ladas et al. 2006; Nocerino et al. 2021; Quimby 2007). Its anti-emetic properties are mainly attributed to bioactive compounds such as 6-, 8-, and 10-gingerol, as well as 6-shogaol. These compounds possess anti-inflammatory and anti-oxidant properties, which help reduce nausea and vomiting by lowering serotonin blocking 5-HT3 levels, muscarinic M3 receptors, and modulating gastrointestinal motility (Dai et al. 2022; Hu et al. 2016; Nocerino et al. 2021). Additionally, ginger has been employed in the management of recurrent abdominal pain in children due to its anti-spasmodic on visceral smooth muscles effects (Weydert 2018). Overall, ginger has been shown to be safe and effective as both an anti-emetic and anti-spasmodic agent in children, with doses of up to 1000 mg per day (Essawy et al. 2021; Pillai et al. 2011; Weydert 2018). In this study, ginger was prescribed at a daily dose of 500 mg, due to its established safety profile in children. It was well tolerated over a three-month period, with no serious adverse effects reported.

Although no studies have evaluated the effectiveness of ginger supplementation in pediatric rheumatic disorders, its efficacy has been investigated in adults with inflammatory rheumatic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA) (Altman and Marcussen 2001; Aryaeian et al. 2019a; Aryaeian et al. 2019b; Rondanelli et al. 2020).

A comprehensive investigation involving 247 patients with OA found that ginger supplementation significantly alleviated pain intensity, reduced morning stiffness, improved ROM in affected joints, and enhanced daily activities, sports performance, and overall quality of life. During this study, patients received one capsule of ginger extract (255 mg) twice

daily for 6 weeks (Altman and Marcussen 2001). Another research on 120 patients with OA revealed that ginger supplementation (two capsules of 500 mg powdered ginger daily over three months) was associated with a decline in inflammatory markers including IL-1, TNF-α, C-reactive protein (CRP), and nitric oxide (NO) (Mozaffari-Khosravi et al. 2016; Naderi et al. 2016).

In a trial involving 66 patients with RA, ginger consumption (two capsules of 750 mg powdered ginger daily for 3 months) led to improved clinical symptoms and disease activity, evaluated through the Disease Activity Score-28 (DAS-28) (Aryaeian et al. 2019a; Aryaeian et al. 2019b). Ginger significantly increased the expression of forkhead box P3 (FoxP3) and peroxisome proliferator-activated receptor-gamma (PPAR-γ) genes (Aryaeian et al. 2019b). These factors are associated with the maintenance of immunological tolerance (Goyal et al. 2018; Liu et al. 2016; Lu et al. 2017). Additionally, ginger supplementation led to a significant reduction in the expression of T-box transcription factor TBX (T-bet) and RARrelated orphan receptor yt (RORyt) genes (Arvaeian et al. 2019b). These factors play a key role in the pathogenesis of many inflammatory and autoimmune disorders (Ji et al. 2011; Tan et al. 2020).

The anti-inflammatory properties of ginger are attributed to the reduction of inflammatory factors including sensitivity CRP (hs-CRP), TNF-α, IL-2 and IL-1B and enhancement antiinflammatory cytokines such as IL-10 (Aryaeian et al. 2019a; Zhang et al. 2016). Ginger also suppresses the biosynthesis of prostaglandins and leukotrienes by inhibiting the enzymes COX-2 and lipoxygenase (Grzanna et al. 2005).

Ginger inhibits the migration of monocytes and leukocytes by reducing the production of key chemokines such as monocyte chemoattractant protein-1 (MCP-1) and RANTES (regulated upon activation, normal T cell expressed and

secreted). Also, it inhibits the activation of macrophages and neutrophils (Ezzat et al. 2018).

Ginger improves the inflammatory state by targeting various signaling pathways including NF-κB, signal transducer and activator of transcription (STAT), mammalian target of rapamycin (mTOR), toll-like receptors (TLRs), NOD-, LRR-and pyrin domain-containing proteins (NLRPs), and mitogen-activated protein kinase (MAPK). This leads to a decrease in the gene expression of inflammatory cytokines (Roudsari et al. 2021).

The interpretation of our findings needs to be considered alongside the following limitations. This study was single-centered and was performed on a small number of patients. We did not measure serum cytokine levels due to financial constraints. Another important limitation is the short duration of ginger supplementation (only three months), which may have been insufficient to achieve maximal efficacy or to detect side effects following chronic use.

present study. ginger supplementation improved ACR-Pedi 30, 50, 70 and 90 responses in pediatric patients with oligo-JIA. Regarding the safety, antiinflammatory and immunomodulatory properties of ginger, it seems that ginger supplementation, along with standard treatment of oligo-JIA, may enhance clinical outcomes and therapeutic responses. However, due to limitations of our study, further research is needed to confirm our findings.

Acknowledgment

The authors sincerely thank the medical staff of Akbar Hospital, especially the kind nursing team, as well as the parents and children whose cooperation made this study possible.

Funding

This study is funded by the Research Council of Mashhad University of Medical Sciences. The fund number is 981702.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Authors' contributions

All authors participated in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Study conception and design: ZH, AA, AM, MOB. Acquisition of data: ZH, MAB, AM, HSS. Analysis and interpretation of data: ZH, AM. Statistical Analysis: ZAS.

References

Al-Mayouf SM, Al Mutairi M, Bouayed K, et al. (2021) Epidemiology and demographics of juvenile idiopathic arthritis in Africa and Middle East. Pediatr Rheumatol Online J 19(1):166 doi:10.1186/s12969-021-00650-x

Altman RD, Marcussen K (2001) Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis & Rheumatism 44(11):2531-2538

Aryaeian N, Mahmoudi M, Shahram F, Poursani S, Jamshidi F, Tavakoli H (2019a) The effect of ginger supplementation on IL2, $TNF\alpha$, and IL1 β cytokines gene expression levels in patients with active rheumatoid arthritis: A randomized controlled trial. Med J Islam Repub Iran 33:154 doi:10.34171/mjiri.33.154

Aryaeian N, Shahram F, Mahmoudi M, et al. ginger (2019b)The effect of supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis. Gene 698:179-185 doi:https://doi.org/10.1016/j.gene.2019.01. 048

Ballester P, Cerdá B, Arcusa R, Marhuenda J, Yamedjeu K, Zafrilla P (2022) Effect of Ginger on Inflammatory Diseases. Molecules 27(21) doi:10.3390/molecules27217223

Consolaro A, Giancane G, Schiappapietra B, et al. (2016) Clinical outcome measures in juvenile idiopathic arthritis. Pediatr Rheumatol Online J 14(1):23 doi:10.1186/s12969-016-0085-5

Ginger in juvenile idiopathic arthritis

- Dai Y, Zhao Y, Nie K (2022) The Antiemetic Mechanisms of Gingerols against Chemotherapy-Induced Nausea and Vomiting. Evid Based Complement Alternat Med 2022:1753430 doi:10.1155/2022/1753430
- Dupuis LL, Nathan PC (2003) Options for the prevention and management of acute chemotherapy-induced nausea and vomiting in children. Paediatr Drugs 5(9):597-613 doi:10.2165/00148581-200305090-00003
- Ebrahimzadeh A, Ebrahimzadeh A, Mirghazanfari SM, Hazrati E, Hadi S, Milajerdi A (2022) The effect of ginger supplementation on metabolic profiles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 65:102802 doi:10.1016/j.ctim.2022.102802
- Essawy MA, Abohadida RM, Abd-Elkader WM, Fathy HM, Hassab HM (2021) Comparing the effect of acupressure and ginger on chemotherapy gastrointestinal side-effects in children with leukemia. Complement Ther Med 60:102730 doi:10.1016/j.ctim.2021.102730
- Ezzat SM, Ezzat MI, Okba MM, Menze ET, Abdel-Naim AB (2018) The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity. J Ethnopharmacol 214:113-123 doi:10.1016/j.jep.2017.12.019
- Goyal G, Wong K, Nirschl CJ, et al. (2018) PPARγ Contributes to Immunity Induced by Cancer Cell Vaccines That Secrete GM-CSF. Cancer Immunol Res 6(6):723-732 doi:10.1158/2326-6066.Cir-17-0612
- Grzanna R, Lindmark L, Frondoza CG (2005) Ginger--an herbal medicinal product with broad anti-inflammatory actions. J Med Food 8(2):125-32 doi:10.1089/jmf.2005.8.125
- Heidari-Beni M, Moravejolahkami AR, Gorgian P, Askari G, Tarrahi MJ, Bahreini-Esfahani N (2020) Herbal formulation "turmeric extract, black pepper, and ginger" versus Naproxen for chronic knee osteoarthritis: A randomized, double-blind, controlled clinical trial. Phytother Res 34(8):2067-2073 doi:10.1002/ptr.6671
- Hu XX, Liu X, Chu Y, Chen WX, Zhang KW, Wu H (2016) [Antiemetic activity of

- effective extract and bioactive compounds in ginger]. Zhongguo Zhong Yao Za Zhi 41(5):904-909 doi:10.4268/cjcmm20160524
- Ji N, Sosa RA, Forsthuber TG (2011) More than just a T-box: the role of T-bet as a possible biomarker and therapeutic target in autoimmune diseases. Immunotherapy 3(3):435-41 doi:10.2217/imt.10.111
- Ladas EJ, Post-White J, Hawks R, Taromina K (2006) Evidence for symptom management in the child with cancer. J Pediatr Hematol Oncol 28(9):601-15 doi:10.1097/01.mph.0000212989.26317.5
- Lete I, Allué J (2016) The Effectiveness of Ginger in the Prevention of Nausea and Vomiting during Pregnancy and Chemotherapy. Integr Med Insights 11:11-7 doi:10.4137/imi.S36273
- Liu YH, Tsai YS, Lin SC, et al. (2016) Quantitative PPARγ expression affects the balance between tolerance and immunity. Sci Rep 6:26646 doi:10.1038/srep26646
- Lu L, Barbi J, Pan F (2017) The regulation of immune tolerance by FOXP3. Nat Rev Immunol 17(11):703-717 doi:10.1038/nri.2017.75
- Mozaffari-Khosravi H, Naderi Z, Dehghan A, Nadjarzadeh A, Fallah Huseini H (2016) Effect of ginger supplementation on proinflammatory cytokines in older patients with osteoarthritis: outcomes of a randomized controlled clinical trial. Journal of nutrition in gerontology and geriatrics 35(3):209-218
- Naderi Z, Mozaffari-Khosravi H, Dehghan A, Nadjarzadeh A, Huseini HF (2016) Effect of ginger powder supplementation on nitric oxide and C-reactive protein in elderly knee osteoarthritis patients: A 12-week double-blind randomized placebocontrolled clinical trial. Journal of Traditional and Complementary Medicine 6(3):199-203 doi:https://doi.org/10.1016/j.jtcme.2014.12
- Nocerino R, Cecere G, Micillo M, et al. (2021) Efficacy of ginger as antiemetic in children with acute gastroenteritis: a randomised controlled trial. Aliment Pharmacol Ther 54(1):24-31 doi:10.1111/apt.16404
- Onel KB, Horton DB, Lovell DJ, et al. (2022) 2021 American College of Rheumatology Guideline for the Treatment of Juvenile

Bozorgvar et al.

- Idiopathic Arthritis: Therapeutic Approaches for Oligoarthritis, Temporomandibular Joint Arthritis, and Systemic Juvenile Idiopathic Arthritis. Arthritis Care Res (Hoboken) 74(4):521-537 doi:10.1002/acr.24853
- Pain CE, McCann LJ (2009) Challenges in the management of juvenile idiopathic arthritis with etanercept. Biologics 3:127-39
- Petty RE, Southwood TR, Manners P, et al. (2004) International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31(2):390-2
- Pillai AK, Sharma KK, Gupta YK, Bakhshi S (2011) Anti-emetic effect of ginger powder versus placebo as an add-on therapy in children and young adults receiving high emetogenic chemotherapy. Pediatric blood & cancer 56(2):234-238
- Quimby EL (2007) The use of herbal therapies in pediatric oncology patients: treating symptoms of cancer and side effects of standard therapies. J Pediatr Oncol Nurs 24(1):35-40
 - doi:10.1177/1043454206296027
- Rondanelli M, Fossari F, Vecchio V, et al. (2020) Clinical trials on pain lowering effect of ginger: A narrative review. Phytother Res 34(11):2843-2856 doi:10.1002/ptr.6730
- Roudsari NM, Lashgari NA, Momtaz S, Roufogalis B, Abdolghaffari AH, Sahebkar A (2021) Ginger: A complementary approach for management of cardiovascular diseases. Biofactors 47(6):933-951 doi:10.1002/biof.1777
- Semwal RB, Semwal DK, Combrinck S, Viljoen AM (2015) Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry

- 117:554-568 doi:10.1016/j.phytochem.2015.07.012
- Tan J, Liu H, Huang M, et al. (2020) Small molecules targeting RORγt inhibit autoimmune disease by suppressing Th17 cell differentiation. Cell Death Dis 11(8):697 doi:10.1038/s41419-020-02891-2
- Trincianti C, Van Dijkhuizen EHP, Alongi A, et al. (2021) Definition and Validation of the American College of Rheumatology 2021 Juvenile Arthritis Disease Activity Score Cutoffs for Disease Activity States in Juvenile Idiopathic Arthritis. Arthritis Rheumatol 73(11):1966-1975 doi:10.1002/art.41879
- Weydert JA (2018) Chapter 45 Recurring Abdominal Pain in Pediatrics. In: Rakel D (ed) Integrative Medicine (Fourth Edition). Elsevier, p 457-465.e2
- Whitehead AL, Julious SA, Cooper CL, Campbell MJ (2016) Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat Methods Med Res 25(3):1057-73
 - doi:10.1177/0962280215588241
- Zaripova LN, Midgley A, Christmas SE, Beresford MW, Baildam EM, Oldershaw RA (2021) Juvenile idiopathic arthritis: from aetiopathogenesis to therapeutic approaches. Pediatr Rheumatol Online J 19(1):135 doi:10.1186/s12969-021-00629-8
- Zhang M, Viennois E, Prasad M, et al. (2016)
 Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer.
 Biomaterials 101:321-40 doi:10.1016/j.biomaterials.2016.06.018