

Original Research Article

Examining efficacy and safety of ethyl acetate extract from *Allium hirtifolium* as complementary therapy in COVID-19: A randomized, multicenter, controlled clinical trial

Mansour Amin¹, Mandana Pouladzadeh², Mohammad Jaafar Yadyad³, Roshanak Roshanfard¹, Mohamad Hasan Pipelzadeh⁴, Afshin Talebi⁵, Behzad Sharif Maakhmalzadeh⁶, Mehdi Bijanzadeh⁷, Nasrin Rakipour¹, Gholamreza Alizadehattar⁵, Seyed Saeed Seyedian⁵, Kambiz Ahmadi Angali⁸, Parastoo Moradi Choghakabodi¹, Akbar Akbari⁹, Fatemeh Maghsodi⁹, Ebrahim Barzegari¹⁰, Maryam Jamalan¹¹, Reza Aalizadeh¹², Mostafa Jamalan^{9,*}

¹Department of Microbiology, Infection and Tropical Diseases Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

²Department of Emergency Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran ³Department of Infectious Diseases, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

⁴Department of Pharmacology and Toxicology Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

⁵Department of Internal Medicine, School of Medicine, Razi Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

⁶Nanotechnology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

⁷Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

⁸Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

⁹Department of Biochemistry, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran

¹⁰Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
¹¹Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
¹²Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran

Article history:

Received: Jan 20, 2023 Received in revised form: Aug 06, 2023 Accepted: Aug 06, 2023 AJP, Vol. 14, No. 6, Nov-Dec 2024, 699-710. https://dx.doi.org/10.22038/AJ P.2024.24523

* Corresponding Authors:

Tel: +98-916-6090434 Fax: +98-61-5527199 mjamalanbiochem@abadanum s.ac.ir mjamalanbichem@gmail.com

Keywords: SARS-CoV-2

COVID-19 Lopinavir Ritonavir Shallomin syrup

Drug safety

Abstract

Objective: Given the apparent life-threatening nature of COVID-19, finding an effective treatment is under investigation.

Materials and Methods: We assessed effect of shallomin oral syrup (co IranAmin[®]) as a complementary treatment to improve the clinical outcomes in COVID-19 patients. Patients in the control group received the approved treatment protocol (lopinavir/ritonavir), while those in the intervention group were treated with the oral syrup shallomin in addition to the approved treatment. Clinical status of treated patients was recorded and compared.

Results: There were meaningful differences between the two groups regarding shortened length of hospital stay and the recovery time for cough, myalgia, sore throat, and shortness of breath. No side effect occurred in the intervention group compared to the control group in terms of biochemical and hematological factors.

Conclusion: It seems that the treatment with shallomin syrup showed remarkable contribution to the recovery of COVID-19 induced symptoms in the patients under lopinavir/ritonavir therapy.

Please cite this paper as:

Amin M, Pouladzadeh M, Yadyad M.J, Roshanfard R, Pipelzadeh M.H, Talebi A, Sharif Maakhmalzadeh B, Bijanzadeh M, Rakipour N, Alizadehattar Gh, Seyedian S.S, Ahmadi Angali K, Moradi Choghakabodi P, Akbari A, Maghsodi F, Barzegari E, Jamalan M, Aalizadeh R, Jamalan M Examining efficacy and safety of ethyl acetate extract from Allium hirtifolium as complementary therapy in COVID-19: A randomized, multicenter, controlled clinical trial. Avicenna J Phytomed, 2024; 14(6): 699-710.

Introduction

The global pandemic of Coronavirus Disease 2019 (COVID-19), caused by Respiratory Severe Acute Syndrome Coronavirus-2 (SARS-CoV-2) resulted in various complicated challenges for people and health services worldwide. So far, many clinical trials have been conducted to find effective, specific, and safe treatments for COVID-19 patients, including antiviral drugs (i.e. lopinavir/ritonavir, remdesivir, favipiravir, umifenovir. ribavirin. chloroquine, and hydroxychloroquine), antibiotics (Consortium, 2021), immune convalescent modulators, plasma (Pouladzadeh et al., 2021), interleukin corticosteroids, inhibitors. baricitinib. anakinra (Kineret[®]), tocilizumab, and anticoagulants (Teimury and Khaledi, 2020; Pouladzadeh et al., 2021). Some of these therapeutic options have shown partially good effects on COVID-19 patients' recovery, while the lack of sufficient evidence to support their definitive effect and reports on the side effects related to these treatments limited their usage (Sahebnasagh et al., 2020; Türsen et al., 2020). Despite the potentially effects widespread protective of vaccination against different variants of COVID-19 (Byambasuren et al., 2023), it is important to acknowledge the presence of undesirable side effects (Aye et al., 2023), further research is still needed to discover effective treatments with minimal side effects (Li et al., 2023).

For a long time, various compounds of shallot extract have been used in treating numerous types of infectious diseases, especially viral ones. Based on the available literature. shallot extract has shown antifungal, meaningful antibacterial, antioxidant, anti-Helicobacter pylori effects. and antiseptic properties (Mohammadi et al., 2015; Sun et al., 2019; Shahrajabian et al., 2020). Viruses like human cytomegalovirus, influenza B, parainfluenza virus type 3, herpes simplex virus types 1 and 2, and human rhino virus 2 are sensitive to shallot sap (Mikaili et al.,

2013). The antiviral property of shallomin has been confirmed in the literature (Pipelzadeh et al., 2014; Shahali et al., 2019; Amin et al., 2022). Previously, the effects of shallomin in the treatment of herpes and genital warts have been reported with an excellent success (Amin and Kapadnis, 2005; Amin et al., 2012). The fraction demonstrated noticeable heat resistance and could be activated in a wide pH range (Amin et al., 2009).

Considering inherent the unpredictability of future waves of the pandemic and the potential limitations in the long-term effectiveness of existing COVID-19 vaccines and drugs, it remains imperative to emphasize the significance of treatments targeting the symptoms induced by SARS-CoV-2 infection. Therefore. concerted endeavors to advance the development of efficacious therapeutic interventions for combating this viral infection are warranted (Yuan et al., 2023). The current study employed a randomized clinical trial design to investigate the outcomes from combined use of standard lopinavir/ritonavir therapy and the wellknown shallomin extract (produced by IranAmin[®]) as a novel therapeutic approach for COVID-19. The examined primary outcomes included the length of hospital stay, cough, headache, muscle or joint pain, sore throat, shortness of breath, chest pain, and gastrointestinal disorders. Additionally, the study evaluated various clinical indices as the secondary outcomes, including biochemical and hematological factors, to elucidate potential side effects induced by the administration of shallomin syrup in the treated patient sample. Preliminary findings suggest that the initial use of shallomin extract (produced as co IranAmin[®]) exhibits both safety and efficacy as a complementary regimen for treating COVID-19 patients. These promising results warrant further mechanistic confirmations and subsequent clinical trial phases, potentially leading to the integration of shallomin extract in routine treatment protocol in the future.

Materials and Methods Study design

This randomized, multicenter, doubleblind, parallel-group, and controlled trial study was approved by the Ethics Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran (Ethical code: IR.AJUMS.REC.1398.995), and was registered in the national registry of clinical (Registration code: trials IRCT20200504047295N1). The trial was conducted from September 5th, 2020, to November 5th, 2020, at Razi Hospital and Sina Hospital in Ahwaz, as well as Ganjavian Hospital in Dezful, Iran. This trial included a 4-week run-in period, oneweek treatment period and a 3-week follow-up period. The original total sample size was estimated according to a previous report by Cao et al. (Cao et al., 2020) based Fleiss' formula with continuity on correction (Fleiss et al., 1980; Lee, 2020), as below:

$$N_{Fleiss} = \frac{[z_{\alpha/2}\sqrt{(r+1)p(1-p)} + z_{\beta}\sqrt{rp_0(1-p_0) + p_1(1-p_1)}]^2}{r(p_0-p_1)^2}$$

Values considered in the formula were the probability of type I error (α =0.025), probability of type II error (β =0.3), proportion of disease population 1 (P0=0.5), proportion of disease population 2 (P1=0.25), Ratio of population 2 to population 1 (r=1). N_{Fleiss} was calculated 57 individuals for each group.

All protocols were developed by the principal investigators. The local institutional ethics committee of each study and clinical center oversaw the proceedings and documentation.

Inclusion/exclusion criteria and participants blinding

Inclusion criteria were COVID-19 infection confirmed by RT-PCR (Shanghai ZJ Bio-Tec or Sansure Biotech), and not receiving any medicines other than the approved treatment protocol, i.e. lopinavir/ritonavir therapy. Male and non-

pregnant female patients being 18 years of age or older were eligible if they had a diagnostic specimen that was positive on RT-PCR, had pneumonia confirmed by chest imaging, and had an oxygen saturation (SaO₂) of 93-96% while they were breathing ambient air or a ratio of the partial pressure of oxygen (PaO₂) to the fraction of inspired oxygen (FiO₂) (PaO₂:FiO₂) at or below 300 mg Hg (Cao et al., 2020). Exclusion criteria encompassed multiple factors, such as physician judgment against trial participation, conditions hindering safe protocol adherence, lopinavir/ritonavir allergy known or hypersensitivity, severe liver disease, contraindicated medication usage, or inability to swallow lopinavir/ritonavir (Cao et al., 2020). Furthermore, coinfection with other pathogens, severe illness, inability to consume shallomin syrup, hypersensitivity to garlic or shallomin syrup, incomplete clinical documents, or premature hospital discharge authorization without medical was considered exclusion criteria.

Shallomin oral syrup and its corresponding placebo counterpart were prepared, formulated, and labeled with unique serial numbers under the supervision of a pharmacist. Following this process, the prepared samples were administered to volunteer patients for treatment. Throughout the clinical trial, only the pharmacist possessed knowledge of the serial numbers assigned to the prepared samples. Participant enrollment, blinded treatment administration, and data collection were conducted under the supervision of physicians at each clinical site. None of the participants, providers, research supervisors, or outcome assessors were aware of the specific formulations used for treatment. Subsequently, after data collection from the clinical centers, the group treated with the formulated shallomin syrup and the group treated with the placebo samples were differentiated based on the indicated serial numbers. The obtained data were then processed under

the supervision of the study designer, pharmacist, and data analysts.

Preparation and characterization of shallomin as oral syrup

Shallomin was prepared as reported before by Amin et al. (Amin et al., 2009) from Persian shallot, Allium hirtifolium that was registered by A2116401020BP code in Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Freeze-dried solid phase of the shallomin extract was dissolved as 0.1% in 0.5% ethanol (Merck. Germany) and 5% glycerol concentrations for preparation of the syrup. The extracted and formulated syrup shallomin is confirmed and registered by Iran Food and Drug Administration as co IranAmin[®] with the registered code of 4367958851681814. At the end, these prepared final products were stored at 4°C.

Treatment of the patients by the oral syrup Shallomin

During the current study, 207 confirmed COVID-19 infected patients consenting to participate in the clinical trial were selected for treatment with the shallomin syrup during a seven-day period. In the first step and after exclusion of patients not meeting the criteria to be involved in the clinical trial, patients were divided into two groups using block randomization. Then, 64 confirmed patients were included in the control group, and the remaining 61 were in the intervention group. The control group received only the routine and confirmed national treatment protocol without additional intervention, and the intervention group received 10 ml of shallomin every 6 hours for 1 week as the complementary regimen to the confirmed treatment protocol. At the time of this clinical trial, the nationally-confirmed treatment of COVID-19 patients was lopinavir/ritonavir Kaletra tablet (400/100)as mg. respectively), taken twice a day for 14 days, besides standard COVID-19 care (Cao et al., 2020).

Outcomes measurement

Before beginning the clinical trial, serum and blood samples and nasopharyngeal smears were collected from all patients for laboratory tests and RT-aPCR, respectively. The demographic data (age, gender, and main symptoms of COVID-19), COVID-19 clinical manifestations (temperature, respiratory rate, and heart rate), length of in-hospital stay, cough, headache, muscle or joint pain, sore throat, shortness of breath, chest pain, and gastrointestinal disorders were recorded as primary outcomes of COVID-19. In addition, hematological and biochemical factors, including complete blood count C-reactive (CBC), protein (CRP), erythrocyte sedimentation rate (ESR), Ddimer, prothrombin time test (PT), partial thromboplastin time (PTT), creatinine, creatinine phosphokinase (CPK), lactate dehydrogenase low-density (LDH), lipoprotein (LDL), and blood urea nitrogen (BUN) were recorded as secondary outcomes in two steps, i.e. on admission day (Pre-treatment) and on the 14th day after the first treatment (Post-treatment).

Statistical analysis

The normality of variables was checked Kolmogorov-Smirnov by the test. Categorical and continuous variables are presented as frequency or percentages and (standard mean±SD deviation). respectively. The chi-square test was used to compare the categorical variables, while the continuous variables were compared through an independent t-test and/or paired t-test. Analysis of covariance (ANCOVA) was used to evaluate the interaction effects of the categorical variables on the continuous dependent variables as well as to control the probable effects of other continuous variables. A p-value <0.05 was considered a definition of significance. SPSS software version 26 (IBM SPSS Inc., Chicago, IL) was used for statistical analyses.

Results

Patients' baseline data

During the current study, 207 patients at stage 3 (hospitalized and requiring conventional oxygen) who had referred to the three clinical centers were assessed for eligibility to participate in the research. Out of this initial population, 130 patients were successfully enrolled. However, five patients (four from the intervention arm and from the control arm) one were subsequently excluded from the study due voluntary discontinuation of the to intervention and/or insufficient data. Ultimately, a total of 61 cases from the intervention arm and 64 cases from the control arm were followed up and included in the final analysis (Figure 1).

Figure 1. Flow diagram of recruiting the patients, group allocation, and analyzed procedures.

The mean age of the cases was 55.39 years old; 57.60% were male and 42.40% were female. The mean age of the intervention group was 52.05 and that of the control group was 58.58 years old. Basic diseases (such atherosclerosis related disease or diabetes) were found among 20.30% and 34.90% of intervention and control groups, respectively. No significant difference was found between the two groups in terms of gender, sputum

production, headache, muscle or joint pain, sore throat, shortness of breath, chest pain or gastrointestinal symptoms resulting from SARS-CoV-2 infection. Cough was more prevalent among the controls (98.40%) vs the intervention group (88.10%). See Table 1 for full baseline analysis.

Patients' clinical outcomes

We used the oral syrup of shallot bulbs, shallomin, for co-treatment of COVID-19

Amin et al.

patients in a regimen complementary to lopinavir/ritonavir as the nationwide standard treatment. Based on our obtained data, the complementary regimen of shallomin in addition to lopinavir/ritonavir significantly reduced the recovery time of cough, myalgia, sore throat, and shortness of breath in COVID-19 patients (Table 2).

Table 1. Baseline demographic and clinical characteristics for the control group (treated by lopinavir/ritonavir regimen) and the intervention group (treated by lopinavir/ritonavir plus shallomin syrup regimen). A $p \le 0.05$ was considered significant

Variables	Total (n= 125)	Intervention group [n=61 (48.80%)]	Control group [n=64 (51.20%)]	p-value
Age (years old)	55.39±16.65	52.05±18.20	58.58±14.46	0.03* ^T
Gender				
Male:	72 (57.60%)	35 (57.40%)	37 (57.80%)	1
Female:	53 (42.40%)	26 (42.60%)	27 (42.20%)	1
Basic disease	34 (27.2%)	12 (20.30%)	22 (34.90%)	0.10
Atherosclerosis related disease	14 (41.17%)	7 (50%)	7 (50%)	0.5
Diabetes	20 (58.82%)	9 (45%)	11 (55%)	0.14
Symptoms				
Cough	114 (93.40%)	52 (88.10%)	62 (98.40%)	0.029*
Sputum production	3 (2.50%)	1 (1.70%)	2 (3.20%)	1
Headache	53 (43.40%)	25 (42.40%)	28 (44.40%)	0.85
Muscle or joint pain	40 (32.80%)	15 (25.40%)	25 (39.70%)	0.12
Sore throat	17 (13.90%)	8 (13.60%)	9 (14.30%)	1
Shortness of breath	104 (85.20%)	48 (81.40%)	56 (88.90%)	0.31
Chest pain	35 (28.70%)	16 (27.10%)	19 (30.20%)	0.84
Gastrointestinal Symptoms	40 (32.80%)	17 (28.80%)	23 (36.50%)	0.44

^T Independent Samples T-test. chi-squared test

Table 2. Comparison of length of in-hospital stay and the recovery time of clinical signs between the intervention and control groups

	Recovery time of clinical signs (day)	
Variables	Intervention group [n=61]	Control group [n=64]	p-value ^T
LOS	7.53±5.07	10.97±6.98	0.001
Cough	3.71±3.59	6.25±5.46	0.008
Headache	3.86±3.76	3.83±2.12	0.97
Muscle or joint pain	4.95±3.26	7.91±5.73	0.049
Sore throat	4.33±3.83	14.67±5.68	0.004
Shortness of breath	4.20±3.49	6.69±5	0.007
Chest pain	4.21±3.68	6.79±6.69	0.22
Gastrointestinal disorders	3.77±1.59	6.53±5.07	0.07

^T Independent samples t-test. LOS: Length of in-hospital stay

Patients' vital laboratory and clinical manifestations

During administration of the shallomin syrup in the intervention group in the present study, possible side effects or intolerance to the drug compared to the group receiving conventional treatment were also examined. However, no side effects or drug intolerance were observed in the shallomin-treated group (Table 3). Based on the intragroup analysis, the mean levels of vital signs, i.e. temperature (°C), respiratory rate, and heart rate, significantly decreased post treatment compared to before treatment in both groups (p < 0.001) in a similar manner but without significance. Furthermore, between-group analyses showed no statistically significant differences out of the normal ranges at the endpoint levels of neither vital nor lab markers (p>0.05).

Efficacy of Shallomin on COVID-19 patients

Variables	Intervention group [n=61 (48.80%)]	Control group [n=64 (51.20%)]	p- value (2)
Temperature (°C)			(-)
Pre-treatment	37.43±0.53	37.41±0.45	0.82
Post-treatment	36.87±0.28	36.82±1.02	0.96
Difference	-0.60±0.45	-0.68 ± 1.05	0.61
p-value (1)	0.0001	0.0004	
Respiratory rate			
Pre-treatment	22_24	22_24	0.53
Post-treatment	20_20.50	20_22	0.50
Difference	-2.20	-2.28	0.80
p-value (1)	0.0001	0.0001	
Heart rate (bpm)			
Pre-treatment	83_89.50	83_90	0.91
Post-treatment	80_85.25	78_86	0.96
Difference	-82.75	-93	0.34
p-value (1)	0.0002	0.0001	
WBC per microliter			
Pre-treatment	8245.54±3957.55	7433.22±3203.45	0.22
Post-treatment	9353.02±5261.73	9110.64±4342.51	0.81
Difference	996.65±5033.12	1878.30±3590.24	0.33
p-value (1)	0.19	0.0008	
Lymphocyte (per mm3)			
Pre-treatment	1097.54±879.30	1114.70±662.35	0.90
Post-treatment	1665.01±1489.19	1460.14±1347.82	0.50
Difference	495.74±1420.54	328.64±1369.97	0.57
p-value (1)	0.03	0.10	
Neutrophils (per mm3) Pre_treatment	7021 03+3621 42	5711 70+2827 32	0.04
Post-treatment	7551.41±4625.88	6962.70±3851.88	0.51
Difference	192.11±3002.70	1461.46±3115.83	0.05
p-value (1)	0.68	0.002	
Platelets (per mm3)			
Pre-treatment	249 89+107 08	253 64+108 90	0.85
Post treatment	204 56+124 14	251 76+103 76	0.22
Difference	40.28+117.22	251.70±105.70	0.22
Difference	40.38±117.33	-8.52±108.50	0.04
p-value (1)	0.15	0.58	
CRP (mg/L) Pre-treatment	73+57 95	68 67+62 77	0.85
Post-treatment	40.02±52.68	23.31±25.54	0.22
Difference	-37.62±80.54	-41.76±59.59	0.83
p-value (1)	0.03	0.0007	
ESR (mm/hr)			
Pre-treatment	49±27.66	57.47±26.98	0.10
Post-treatment	37.15+26.43	43 98+24 88	0.22
Difference	-11.56+28.60	-16.75+26.47	0.40
		0.0007	
p-value (1)	0.01	0.0001	

Table 3. Comparison of the vital and laboratory markers between the intervention and control groups

Amin *et al*.

Tuble 5. Continue			
D-dimer (ng/ml)			
Pre-treatment	49±27.66	57.47±26.98	0.10
Post-treatment	37.15±26.43	43.98±24.88	0.22
Difference	-11.56±28.60	-16.75±26.47	0.20
p-value (1)	0.01	0.0001	
PT (s) (INR)			
Pre-treatment	12.55±1.27	12.67±1	0.60
Post-treatment	12.79±1.63	12.49±0.884	0.30
Difference	0.40±1.36	-0.18 ± 1.47	0.06
p-value (1)	0.04	0.52	
PTT (s)			
Pre-treatment	33.11±7.37	31.33±5.25	0.16
Post-treatment	30.45±6.96	31.42±5.87	0.50
Difference	-1.77±10.27	-0.30±4.90	0.41
p-value (1)	0.29	0.68	
Creatinine levels (mg/dl)			
Pre-treatment	0.95±0.24	1.10±1.02	0.05
Post-treatment	0.89±0.23	0.50±0.62	0.20
Difference	-0.077±0.162	-0.073±0.316	0.93
p-value (1)	0.004	0.11	
CPK (U/L)			
Pre-treatment	171.85±178.91	154.45±149.72	0.64
Post-treatment	87.46±82.87	90.07±64.85	0.89
Difference	-68.61±200.45	-43.57±83.60	0.54
p-value (1)	0.09	0.01	
LDH (Unit/L)			
Pre-treatment	694.40±319.66	706.39±370.95	0.85
Post-treatment	588.32±229.32	651±345.68	0.33
Difference	-112.77±351.39	-116±277.64	0.96
p-value (1)	0.04	0.009	
LDL (Unit/L)			
Pre-treatment	97.47±98.96	85.22±33.85	0.50
Post-treatment	82.23±38.51	83.19±36.31	0.92
Difference	3.88±37.87	-1.67±13.53	0.44
p-value (1)	0.60	0.50	
BUN (mg/dl)			
Pre-treatment	18.52±8	18.70±8.10	0.50
Post-treatment	21.20±11.06	20.88±7.66	0.92
Difference	3.42±7.53	2.51±8.44	0.59
p-value (1)	0.60	0.50	

Table 3. Continue

BUN, Blood urea nitrogen; CPK, Creatine phosphokinase; LDH, Lactate dehydrogenase; LDL, Low-density lipoprotein

Discussion

According to the most recent update of the NIH COVID-19 Treatment Guidelines (April 20, 2023), the severity of the disease is categorized into five stages as follows: being hospitalized for reasons other than COVID-19, hospitalization without the supplementation, need for oxygen hospitalization requiring conventional oxygen therapy, hospitalization requiring high-flow nasal cannula (HFNC) oxygen or non-invasive ventilation (NIV), and hospitalization requiring mechanical ventilation (MV) or extracorporeal membrane oxygenation (ECMO)

(https://www.covid19treatmentguidelines. nih.gov/tables/management-of-

hospitalized-adults-summary/). As previously mentioned, the twice-daily oral administration of lopinavir/ritonavir (400 mg/100 mg) was among the approved treatment protocols for COVID-19 patients in 2020 (Cao et al., 2020). However, a clinical trial conducted by Alexander M. Kaizer et al. in 2023 demonstrated that this regimen did not result in significant improvements in symptom resolution or reduction of hospitalization individuals with COVID-19 (Kaizer et al., 2023). In Kandeel colleagues addition. and conducted a study establishing that the regimen involving treatment lopinavir/ritonavir was not effective as a standalone therapy or in combination with interferon for COVID-19 patients (Kandeel et al., 2023). Presently, there are three recommended therapeutic protocols for COVID-19 patients hospitalized who conventional oxygen. require These protocols involve the use of remdesivir alone, a combination of dexamethasone and remdesivir (or dexamethasone alone if remdesivir is unavailable), and the of oral administration baricitinib or intravenous tocilizumab (Collins et al., 2023).

The antiviral properties of shallot have been established previously (Taran et al., 2006). Mnayer et al. (2014) found that shallot extracts had considerable

antimicrobial and antioxidant effects (Mnayer et al., 2014). Although there are conflicting outcomes observed with many proposed treatments for COVID-19 (Focosi et al., 2022; Vahedian-Azimi et al., 2022), the complementary treatment of shallomin has demonstrated significant effects on the duration of hospitalization for COVID-19 patients. Reducing the time of hospitalization for COVID-19 patients is one of the main aims in effective treatment of the patients. A study by Baud et al. (2020) showed that average hospitalization time for confirmed COVID-19 patients (from the onset of symptoms that need intensive care) was about 10 days (Baud et al., 2020). One of the consequential results in the present study was the effect of the complementary treatment on the length of hospitalization of COVID-19 patients. While in the intervention group, the average number of hospitalization days was 7.53±5.07, this value was 10.97±6.98 for the control group, clearly showing the significant effect of the complementary treatment on decreasing the duration of admission in hospital and its positive effect on patients' recovery process.

Based on the report by Rong-Hui Du et al. at 2020 in a prospective cohort study, mortality rate of hospitalized COVID-19 patients due to multiple organ failure, especially respiratory failure and heart failure, was 11.7%, and the mean±SD of duration from admission to death was 13.7±8.3 days (range 3-33 days) (Du et al., 2020). The mortality rate in the patients of the present study was 4 (6.55%) people in the intervention group and 11 (17.18%) in control group, indicating the the meaningful reduction in death events. Therefore, remarkable shortening of hospitalization and reduction of mortality in the intervention patients may be the most important clinical outcomes of treating the patients with the oral syrup shallomin as a complementary medical regimen. It seems that the small study population may be the main reason for the non-significant difference in death reduction observed.

Although we used shallomin as а complementary treatment simultaneously with oral lopinavir/ritonavir (400 mg/100 ineffectiveness of the mg). oral lopinavir/ritonavir treatment in hospitalized and non-hospitalized COVID-19 patients was confirmed and wildly accepted at the time of this paper's publication (Kandeel et 2023). Therefore, the reported al.. beneficial effects observed in this study can be attributed exclusively to the treatment with shallomin syrup.

During the current study, we could not find any noticeable side effect of shallomin, while many of proposed protocols that are used for treatment of COVID-19 patients could cause serious side effects, such as the increased risk of bradycardia (Beyls et al., 2020), nausea, and breathing problems (Goldman et al., 2020), development of anemia (Praveen et al., 2020), the immunosuppression (King et al., 2020; Russell et al., 2020), and increased alanine aminotransferase during the treatment (Alattar et al., 2020).

Emerging of new variants of SARS-CoV-2 with new attributes may also question the efficacy of approved vaccines and medicines. In such situation, complementary regimen medicines may present a potential to effectively cure or at least decrease the SARS-CoV-2 induced symptoms. In the current randomized, double-blinded and multicenter trial, we investigated the efficacy and safety of an ethylene acetate fraction of Persian shallot named shallomin with specific anti SARS-CoV-2 effects as an oral syrup for patients infected by SARS-CoV-2 in combination with lopinavir/ritonavir treatment. Based on with the obtained results. treatment shallomin was significantly associated with a shorter length of in-hospital stay, a shorter length of the recovery time for myalgia, and faster cure of sore throat and shortness of breath. Furthermore, this indicated cotreatment of COVID-19 patients could also decrease the reported mortality rate. Based on the assessment of hematological and inflammatory markers, no side effects were

observed in the intervention group when compared to the control group. However, it is important to acknowledge the limitations of this study, as is the case with other investigations examining the efficacy of vaccines or medications against COVID-19. These limitations include the potential impact of new variants of SARS-CoV-2, variations symptom presentation in depending the susceptibility and on underlying conditions of infected individuals. variations in therapeutic protocols across different clinical centers, and variations in protocols endorsed by international health organizations.

Acknowledgment

The authors of the article would like to thank and appreciate all the people who helped them achieve this research.

Conflicts of interest

The authors have declared that there is no conflict of interest or any kind of financial or non-financial support from any related company or organization.

References

- Alattar R, Ibrahim TB, Shaar SH, Abdalla S, Shukri K, Daghfal JN, Khatib MY, Aboukamar M, Abukhattab M, Alsoub HA. 2020. Tocilizumab for the treatment of severe coronavirus disease 2019. J Med Virol, 92: 2042-2049.
- Amin M, Kapadnis B. 2005. Heat stable antimicrobial activity of allium ascalonicum against bacteria and fungi. Indian J Exp Biol, 43: 751-754.
- Amin M, Moghimipour E, Pipelzadeh M-H, Handali S, Yaghoobi M-R, Farshadzadeh Z. 2022. Physicochemical characterization and clinical evaluation of final formulation of shallomin liposomal gel on cold sore. J Med Plant Res, 11: 43-49.
- Amin M, Montazeri EA, Mashhadizadeh MA, Sheikh AF. 2009. Characterization of shallot, an antimicrobial extract of allium ascalonicum. Pak J Med Sci, 25: 948-952.
- Amin M, Pipelzadeh MH, Mehdinejad M, Rashidi I. 2012. An in vivo toxicological study upon shallomin, the active

antimicrobial constitute of persian shallot (allium hirtifolium, boiss) extract. Jundishapur J Nat Pharm Prod, 7: 17-21.

- Aye YN, Mai AS, Zhang A, Lim OZH, Lin N, Ng CH, Chan MY, Yip J, Loh P-H, Chew NW. 2023. Acute myocardial infarction and myocarditis following covid-19 vaccination. QJM, 116: 279-283.
- Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G. 2020. Real estimates of mortality following covid-19 infection. Lancet Infect Dis, 20: 773.
- Beyls C, Martin N, Hermida A, Abou-Arab O, Mahjoub Y. 2020. Lopinavir-ritonavir treatment for covid-19 infection in intensive care unit: Risk of bradycardia. Circ Arrhythm Electrophysiol, 13: e008798.
- Byambasuren O, Stehlik P, Clark J, Alcorn K, Glasziou P. 2023. Effect of covid-19 vaccination on long covid: Systematic review. BMJ Med, 2: e000385.
- Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M. 2020. A trial of lopinavir–ritonavir in adults hospitalized with severe covid-19. N Engl J Med, 382: 1787-1799.
- Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X, Xia J, Chen N, Xiang J, Yu T, Bai T, Xie X, Zhang L, Li C, Yuan Y, Chen H, Li H, Huang H, Tu S, Gong F, Liu Y, Wei Y, Dong C, Zhou F, Gu X, Xu J, Liu Z, Zhang Y, Li H, Shang L, Wang K, Li K, Zhou X, Dong X, Qu Z, Lu S, Hu X, Ruan S, Luo S, Wu J, Peng L, Cheng F, Pan L, Zou J, Jia C, Wang J, Liu X, Wang S, Wu X, Ge Q, He J, Zhan H, Qiu F, Guo L, Huang C, Jaki T, Hayden FG, Horby PW, Zhang D, Wang C. 2020. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N Engl J Med, 382: 1787-1799.
- Collins F, Adam S, Colvis C, Desrosiers E, Draghia-Akli R, Fauci A, Freire M, Gibbons G, Hall M, Hughes E. 2023. The NIH-led research response to COVID-19. Science, 379: 441-444.
- Consortium WST. 2021. Repurposed antiviral drugs for covid-19—interim who solidarity trial results. N Engl J Med, 384: 497-511.
- Du R-H, Liang L-R, Yang C-Q, Wang W, Cao T-Z, Li M, Guo G-Y, Du J, Zheng C-LZhu Q. 2020. Predictors of mortality for patients with covid-19 pneumonia caused by sarscov-2: A prospective cohort study. Eur Respir J, 7: 55.

- Fleiss JL, Tytun A, Ury HK. 1980. A simple approximation for calculating sample sizes for comparing independent proportions. Biometrics, 36: 343-346.
- Focosi D, Franchini M, Pirofski L-a, Burnouf T, Paneth N, Joyner M J, Casadevall A. 2022. Covid-19 convalescent plasma and clinical trials: Understanding conflicting outcomes. Clin Microbiol Rev, 35: e00200-00221.
- Goldman JD, Lye DC, Hui DS, Marks KM, Bruno R, Montejano R, Spinner CD, Galli M, Ahn M-Y, Nahass RG. 2020. Remdesivir for 5 or 10 days in patients with severe covid-19. N Engl J Med, 383: 1827-1837.
- Kaizer AM, Shapiro NI, Wild J, Brown SM, Cwik BJ, Hart KW, Jones AE, Pulia MS, Self WH, Smith C, Smith SA, Ng PC, Thompson BT, Rice TW, Lindsell CJ, Ginde AA. 2023. Lopinavir/ritonavir for treatment of non-hospitalized patients with covid-19: A randomized clinical trial. Int J Infect Dis, 128: 223-229.
- Kandeel M, Morsy MA, Abd El-Lateef HM, Marzok M, El-Beltagi HS, Al Khodair KM, Albokhadaim I, Venugopala KN. 2023. The safety and efficacy of the protease inhibitors lopinavir/ritonavir as monotherapy or combined with interferon in covid-19 patients. Processes, 11: 398.
- King A, Vail A, O'Leary C, Hannan C, Brough D, Patel H, Galea J, Ogungbenro K, Wright M, Pathmanaban O. 2020. Anakinra in covid-19: Important considerations for clinical trials. Lancet Rheumatol, 2: e379e381.
- Lee PH. 2020. The quality of the reported sample size calculation in clinical trials on COVID-19 patients indexed in PubMed. Eur J Intern Med, 77: 139-140.
- Li G, Hilgenfeld R, Whitley R, De Clercq E. 2023. Therapeutic strategies for covid-19: Progress and lessons learned. Nat Rev Drug Discov, 22: 449-475.
- Mikaili P, Maadirad S, Moloudizargari M, Aghajanshakeri S, Sarahroodi S. 2013. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran J Basic Med Sci, 16: 1031-1048.
- Mnayer D, Fabiano-Tixier AS, Petitcolas E, Hamieh T, Nehme N, Ferrant C, Fernandez X, Chemat F. 2014. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the alliaceae family.

Molecules, 19: 20034-20053.

- Mohammadi S, Zarei M, Mahmoodi M, Zarei M, Asgari Nematian M. 2015. In vivo antinociceptive effects of persian shallot (allium hirtifolium) in male rat. Avicenna J Neuropsychophysiol, 2: 25-29.
- Pipelzadeh MH, Amin M, Khozani AS, Radmanesh M. 2014. Shallominthe active antimicrobial constituent of persian shallot in treatment of oral herpes: A double-blind randomized clinical trial. Jundishapur J Nat Pharm Prod, 9: e17372.
- Pouladzadeh M, Safdarian M, Eshghi P, Abolghasemi H, Sheibani B, Moradi Choghakabodi P, Feghhi A, Ghafourian Boroujerdnia M, Forouzan A, Jalali Far MA. 2021. A randomized clinical trial evaluating the immunomodulatory effect of convalescent plasma on covid-19-related cytokine storm. Intern Emerg Med, 16: 2181-2191.
- Praveen D, Puvvada RC, Aanandhi V. 2020. Janus kinase inhibitor baricitinib is not an ideal option for management of covid-19. Int J Antimicrob Agents, 55: 105967.
- Russell CD, Millar JE, Baillie JK. 2020. Clinical evidence does not support corticosteroid treatment for 2019-ncov lung injury. The lancet, 395: 473-475.
- Sahebnasagh Α, Avan R, Saghafi F. Mojtahedzadeh M, Sadremomtaz Α. Arasteh O, Tanzifi A, Faramarzi F, Negarandeh R. Safdari M. 2020. Pharmacological treatments of covid-19. Pharmacol Rep, 72: 1446-1478.

- Shahali S, Amin M, Hassani MK, Yaghoobi R, Saki M. 2019. Effects of shallomin and podophyllin solution 25% for genital hpv warts in women: A randomized controlled trial. J Acute Dis, 8: 118-122.
- Shahrajabian MH, Wenli S, Cheng Q. 2020. Chinese onion, and shallot, originated in asia, medicinal plants for healthy daily recipes. Not Sci Biol, 12: 197-207.
- Sun W, Shahrajabian MH, Cheng Q. 2019. The insight and survey on medicinal properties and nutritive components of shallot. J Med Plant Res, 13: 452-457.
- Taran M, Rezaeian M, Izaddoost M. 2006. In vitro antitrichomonas activity of allium hirtifloium (persian shallot) in comparison with metronidazole. Iran J Public Health, 35: 92-94.
- Teimury A, Khaledi EM. 2020. Current options in the treatment of covid-19: A review. Risk Manag Healthc Policy, 13: 1999-2010.
- Türsen Ü, Türsen B, Lotti T. 2020. Cutaneous sıde- effects of the potential covid- 19 drugs. Dermatol Ther, 33: e13476.
- Vahedian-Azimi A, Abbasifard M, Rahimi-Bashar F, Guest PC, Majeed M, Mohammadi A, Banach M, Jamialahmadi T, Sahebkar A. 2022. Effectiveness of curcumin on outcomes of hospitalized covid-19 patients: A systematic review of clinical trials. Nutrients, 14: 256.
- Yuan Y, Jiao B, Qu L, Yang D, Liu R. 2023. The development of covid-19 treatment. Front Immunol, 14: 1125246.