Molecular mechanisms underlying gallic acid effects against cardiovascular diseases: An update review

Document Type: Review Article


Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.


Objective: The prevalence of cardiovascular diseases (CVDs) is growing. CVDs are the major cause of mortality and have become one of the most important health challenges in developing countries. Gallic acid (GA) is a natural phytochemical which has been widely used against multiple conditions. The present review was designed to evaluate molecular mechanisms underlying the protective effects of this agent against CVDs.
Material and Methods: Data discussed in this review were collected from the articles published in databases such as Science Direct, Scopus, PubMed, and Scientific Information Database between 1993 and 2018.
Results: According to the experimental studies, GA has protective actions against CVDs through increasing antioxidant enzymes capacity, inhibition of lipid peroxidation and decreasing serum levels of cardiac marker enzymes, modulation of hemodynamic parameters, recovery of electrocardiogram aberrations, and preservation of histopathological changes.
Conclusion: GA has potential cardioprotective action. Therefore, it has been suggested that this agent can be administered in underlying of CVDS.


Main Subjects

Akbari G, Ali Mard S, Veisi A. 2018. A comprehensive review on regulatory effects of crocin on ischemia/reperfusion injury in multiple organs. Biomed Pharmacother, 99: 664-670.

Akbari G, Mard SA, Dianat M, Mansouri M. 2017. The hepatoprotective and microRNAs downregulatory effects of crocin following hepatic ischemia-reperfusion injury in rats. Oxid Med Cell Longev, 2017: 1702967.

Alqahtani SA, Fouad TR, Lee SS. 2008. Cirrhotic cardiomyopathy. Semin Liver Dis, 28:59-69.

Appeldoorn CC, Bonnefoy A, Lutters BC, Daenens K, van Berkel TJ, Hoylaerts MF, Biessen EA. 2005. Gallic acid antagonizes P-selectin–mediated platelet–leukocyte interactions: Implications for the French paradox. Circulation, 111: 106-112.

Arabi M, Ghaedi M, Ostovan A. 2017. Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples. J Chromatogr B Analyt Technol Biomed Life Sci, 1048: 102-110.

Arola OJ, Saraste A, Pulkki K, Kallajoki M, Parvinen M, Voipio-Pulkki LM. Voipio-Pulkki 2000. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer res, 60: 1789-1792.

Badavi M, Barzegar F, Dianat M, Mard SA. 2016. Evaluation of the effect of gallic acid on QT interval prolongation and serum billirubin in rat model of liver cirrhosis. RJPBCS,7: 586-592.

Badavi M, Bazaz A, Dianat M, Sarkaki A. 2017. Gallic acid improves endothelium-dependent vasodilatory response to histamine in the mesenteric vascular bed of diabetic rats. J Diabetes, 9: 1003-1011.

Badavi M, Sadeghi N, Dianat M, Samarbafzadeh A. 2014. Effects of gallic Acid and cyclosporine a on antioxidant capacity and cardiac markers of rat isolated heart after ischemia/reperfusion. Iran Red Crescent Med J, 16: e16424.

Badavi M, Sadeghi N, Dianat M, Samarbafzadeh A. 2017. Gallic acid and cyclosporine mixture and their effects on cardiac dysfunction induced by ischemia/reperfusion and eNOS/iNOS expression. Int J Cardiovasc Sci, 30: 207-218.

Bakheet MS, Soltan S, Gadalla A, Haredy HH, Shakoor MA. 2014. Antioxidants (vitamin E and gallic acid) as valuable protective factors against myocardial infarction. Basic Res J Med Clin Sci, 11: 109-122.

Balasundaram K, Masse S, Nair K, Umapathy K. 2013. A classification scheme for ventricular arrhythmias using wavelets analysis. Med Biol Eng Comput, 51: 153-164.

Carey EJ, Douglas DD. 2005. Effects of orthotopic liver transplantation on the corrected QT interval in patients with end-stage liver disease. Dig Dis Sci, 50: 320-323.

Chanwitheesuk A, Teerawutgulrag A, Kilburn J D, Rakariyatham N. 2007. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem, 100: 1044-1048.

Chao J, Huo TI, Cheng HY, Tsai JC, Liao JW, Lee MS, Qin XM, Hsieh MT, Pao LH, Peng WH. 2014. Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced NAFLD mice. PloS one, 9: e96969.

Chi C, Li X, Zhang Y, Chen L, Li L, Wang Z. 2017. Digestibility and supramolecular structural changes of maize starch by non-covalent inteoractins with gallic acid. Food Funct, 8: 720-730.

Choubey S, Varughese LR, Kumar V, Beniwal V. 2015. Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharm Pat Anal, 4: 305-315.

Collard CD, Gelman S. 2001. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology, 94: 1133-1138.

 De BK, Majumdar D, Das D, Biswas PK, Mandal SK, Ray S, Bandopadhyay K, Das TK, Dasgupta S, Guru S. 2003. Cardiac dysfunction in portal hypertension among patients with cirrhosis and non-cirrhotic portal fibrosis. J Hepatol, 39: 315-319.

Dianat M, Akbari G, Badavi M. 2013. Antidysrhythmic effects of gallic acid on cacl2-induced arrhythmia in rat. Int J Res Dev Pharm L Sci, 2: 686-689.

Dianat M, Sadeghi N, Badavi M, Panahi M, Taheri Moghadam M. 2014. Protective effects of co-administration of gallic Acid and cyclosporine on rat myocardial morphology against ischemia/reperfusion. Jundishapur J Nat Pharm Prod, 9: e17186.

Doan KV, Ko CM, Kinyua AW, Yang DJ, Choi YH, Oh IY, Nguyen NM, Ko A, Choi JW, Jeong Y, Jung MH, Cho WG, Xu S, Park KS, Park WJ, Choi SY, Kim HS, Moh SH, Kim KW. 2015. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology, 156: 157-168.

Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. 2016. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol, 32: 659-668.

Hausenloy DJ, Yellon DM. 2013. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest, 123: 92-100.

Hochman JS, Bulkley BH. 1982. Expansion of acute myocardial infarction: an experimental study. Circulation, 65: 1446-1450.

Huang DW, Chang WC, Wu JS, Shih RW, Shen SC. 2016. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr Res, 36: 150-160.

Inagaki K, Koyanagi T, Berry NC, Sun L, Mochly-Rosen D. 2008. Pharmacological inhibition of epsilon-protein kinase C attenuates cardiac fibrosis and dysfunction in hypertension-induced heart failure. Hypertension, 51: 1565-1569.

Jadon A, Bhadauria M, Shukla S. 2007. Protective effect of Terminalia belerica Roxb. and gallic acid against carbon tetrachloride induced damage in albino rats. J Ethnopharmacol, 109: 214-218.

Janota T. 2014. Biochemical markers in the diagnosis of myocardial infarction. Cor et Vasa 56: e304-e310.

Jeong MY, Kinugawa K, Vinson C, Long CS. 2005. AFos dissociates cardiac myocyte hypertrophy and expression of the pathological gene program. Circulation, 111: 1645-1651.

Jin L, Lin MQ, Piao ZH, Cho JY, Kim GR, Choi SY, Ryu Y, Sun S, Kee HJ, Jeong MH. 2017. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2. J Hypertens, 35: 1502-1512.

Jin L, Piao ZH, Liu CP, Sun S, Liu B, Kim GR, Choi SY, Ryu Y, Kee HJ, Jeong MH. 2017. Gallic acid attenuates calcium calmodulin‐dependent kinase II‐induced apoptosis in spontaneously hypertensive rats. J Cell Mol Med, 22:1517-1526.

Jin L, Piao ZH, Sun S, Liu B, Kim GR, Seok YM, Lin MQ, Ryu Y, Choi SY, Kee HJ, Jeong MH. 2017. Gallic acid reduces blood pressure and attenuates oxidative stress and cardiac hypertrophy in spontaneously hypertensive rats. Sci Rep, 7: 15607.

John RM, Tedrow UB, Koplan BA, Albert CM, Epstein LM, Sweeney MO, Miller AL, Michaud GF, Stevenson WG. 2012. Ventricular arrhythmias and sudden cardiac death. Lancet, 380: 1520-1529.

Kandalam V, Basu R, Moore L, Fan D, Wang X, Jaworski DM, Oudit GY, Kassiri Z. 2011. Lack of tissue inhibitor of metalloproteinases 2 leads to exacerbated left ventricular dysfunction and adverse extracellular matrix remodeling in response to biomechanical stress. Circulation, 124: 2094-2105.

  Kang NLee JHLee WKo JYKim EAKim JSHeu MSKim GHJeon YJ. 2015. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ Toxicol Pharmacol, 39: 764-772.

Kaul N Kaul NSiveski-Iliskovic NHill MSlezak JSingal PK. 1993. Free radicals and the heart. J Pharmacol Toxicol Methods, 30: 55-67.

Kawada M, Ohno Y, Ri Y, Ikoma T, Yuugetu H, Asai T, Watanabe M, Yasuda N, Akao S, Takemura G, Minatoguchi S, Gotoh K, Fujiwara H, Fukuda K. 2001. Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice. Anticancer drugs, 12: 847-852.

Kee HJ, Cho SN, Kim GR, Choi SY, Ryu Y, Kim IK, Hong YJ, Park HW, Ahn Y, Cho JG, Park JC, Jeong MH. 2014. Gallic acid inhibits vascular calcification through the blockade of BMP2–Smad1/5/8 signaling pathway. Vascul Pharmacol, 63: 71-78.

Kim SH, Jun CD, Suk K, Choi BJ, Lim H, Park S, Lee SH, Shin HY, Kim DK, Shin TY. 2005. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol Sci, 91: 123-131.

Kong P, Christia P, Frangogiannis NG. 2014. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci, 71: 549-574.

Kulkarni J, Swamy AV. 2015. Cardioprotective effect of gallic acid against doxorubicin-induced myocardial toxicity in albino rats. Indian J Health Sci Biomed Res, 8: 28-35.

Kumar S, Meenu S, Kumar V, Prakash O, Arya R, Rana M, Kumar D. 2012. Traditional medicinal plants curing diabetes: A promise for today and tomorrow. Asian J Tradit Med, 7: 178-188.

Liang Q, De Windt LJ, Witt SA, Kimball TR, Markham BE, Molkentin JD. 2001. The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J Biol Chem276: 30245-30253.

Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. 2013. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food chem, 138: 1028-1033.

Mard SA, Akbari G, Mansouri E, Parsanahad M. 2017. Renoprotective effect of crocin following liver ischemia/reperfusion injury in Wistar rats. Iran J Basic Med Sci, 20: 1172-1177.

Meinardi MT, Gietema JA, van Veldhuisen DJ, van der Graaf WT, de Vries EG, Sleijfer DT. 2000. Long-term chemotherapy-related cardiovascular morbidity. Cancer Treat Rev, 26: 429-447.

Meng XM, Huang XR, Chung AC, Qin W, Shao X, Igarashi P, Ju W, Bottinger EP, Lan HY. 2010. Smad2 protects against TGF-β/Smad3-mediated renal fibrosis. J Am Soc Nephrol, 21: 1477-1487.

Mohan IK, Kumar KV, Naidu MU, Khan M, Sundaram C. 2006. Protective effect of CardiPro against doxorubicin-induced cardiotoxicity in mice. Phytomedicine, 13: 222-229.

Nadar S, Blann AD, Lip GY. 2004. Endothelial dysfunction: methods of assessment and application to hypertension. Curr Pharm Des, 10: 3591-3605.

Ng HH, Leo CH, Prakoso D, Qin C, Ritchie RH, Parry LJ. 2017. Serelaxin treatment reverses vascular dysfunction and left ventricular hypertrophy in a mouse model of Type 1 diabetes. Sci Rep, 7: 39604.

Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. 2012. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol, 52: 1213-1225.

Odukanmi OA, Salami AT, Ashaolu OP, Adegoke AG, Olaleye SB. 2017. Kolaviron attenuates ischemia/reperfusion injury in the stomach of rats. Appl Physiol Nutr Metab, 43: 30-37.

Olusoji MJ, Oyeyemi OM, Asenuga ER, Omobowale TO, Ajayi OL, Oyagbemi AA. 2017. Protective effect of Gallic acid on doxorubicin‐induced testicular and epididymal toxicity. Andrologia, 49: e12635.

Oparil S, Zaman MA, Calhoun DA. 2003. Pathogenesis of hypertension. Ann Intern Med, 139: 761-776.

Pannirselvam M, Wiehler WB, Anderson T, Triggle CR. 2005. Enhanced vascular reactivity of small mesenteric arteries from diabetic mice is associated with enhanced oxidative stress and cyclooxygenase products. Br J Pharmacol, 144: 953-960.

Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Serena D, Ruggiero FM. 1999. Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med, 27: 42-50.

Patel SS, Goyal RK. 2011. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacognosy Res, 3: 239-245.

Perazzoli MR, Perondi CK, Baratto CM, Winter E, Creczynski-Pasa TB, Locatelli C. 2017. Gallic acid and dodecyl gallate prevents carbon tetrachloride-induced acute and chronic hepatotoxicity by enhancing hepatic antioxidant status and increasing p53 expression. Biol Pharm Bull, 40: 425-434.

Pohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze-Mosgau S, Stallmach A, Kinne RW, Wolf G. 2009. TGF-β and fibrosis in different organs—molecular pathway imprints. B iochim Biophys Acta, 1792: 746-756.

Popov M, Hejtmánková A, Kotíková Z, Střalková R, Lachmann J. 2017. Content of flavan-3-ol monomers and gallic acid in grape seeds by variety and year. Vitis: J Grape Res, 56: 45-48.

Stanely Mainzen Prince P, Priscilla H, Devika PT. 2009. Gallic acid prevents lysosomal damage in isoproterenol induced cardiotoxicity in Wistar rats. Eur J Pharmacol, 615: 139-143.

Priscilla DH, Prince PS. 2009. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chem Biol Interact, 179: 118-124.

Qin W, Chung AC, Huang XR, Meng XM, Hui DS, Yu CM, Sung JJ, Lan HY. 2011. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol, 22: 1462-1474.

Ramezani-Aliakbari F, Badavi M, Dianat M, Mard SA, Ahangarpour A. 2017. Effects of gallic acid on hemodynamic parameters and infarct size after ischemia-reperfusion in isolated rat hearts with alloxan-induced diabetes. Biomed Pharmacother, 96: 612-618.

Rather SA, Saravanan N. 2013. Protective effect of gallic acid on immobilization induced stress in encephalon and myocardium of male albino Wistar rats. Int J Nutr Pharmacol Neurol Dis, 3:296-275.

Rhoden E, Teloken C, Lucas M, Rhoden C, Mauri M, Zettler C, Bello-Klein A, Barros E. 2002. Protective effect of allopurinol in the renal ischemia-reperfusion in uninephrectomized rats. Gen Pharmacol, 35: 189-193.

Rose BA, Force T, Wang Y. 2010. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev, 90: 1507-1546.

Ryu Y, Jin L, Kee HJ, Piao ZH, Cho JY, Kim GR, Choi SY, Lin MQ, Jeong MH. 2016. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity. Sci Rep, 6: 34790.

Sag CM, Santos CX, Shah AM. 2014. Redox regulation of cardiac hypertrophy. J Mol Cell Cardiol, 73: 103-111.

Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. 2013. Molecular mechanisms of ischemia–reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol, 47: 9-23.

Sandoo A, van Zanten JJ, Metsios GS, Carroll D, Kitas GD. 2010. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J, 4: 302-312.

Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, Pagano F, Schiavon S, Bordin A, Carrizzo A, Vecchione C, Valenti V, Chimenti I, De Falco E, Sciarretta S, Frati G. 2017. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid Med Cell Longev, 2017: 3920195.

Segura AM, Frazier OH, Buja LM. 2014. Fibrosis and heart failure. Heart Fail Rev, 19: 173-185.

Sen S, Asokkumar K, Umamaheswari M, Sivashanmugam AT, Subhadradevi V. 2013. Antiulcerogenic effect of gallic acid in rats and its effect on oxidant and antioxidant parameters in stomach tissue. Indian J Pharm Sci, 75: 149-155.

Soong YY, Barlow PJ. 2006. Quantification of gallic acid and ellagic acid from longan (Dimocarpus longan Lour.) seed and mango (Mangifera indica L.) kernel and their effects on antioxidant activity. Food Chem, 97: 524-530.

Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PW. 2014. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, 63: 2889-2934.

Suwalsky M, Colina J, Gallardo MJ, Jemiola-Rzeminska M, Strzalka K, Manrique-Moreno M, Sepúlveda B. 2016. Antioxidant capacity of gallic acid in vitro assayed on human erythrocytes. J Membr Biol, 249: 769-779.

Umadevi S, Gopi V, Elangovan V. 2014. Regulatory mechanism of gallic acid against advanced glycation end products induced cardiac remodeling in experimental rats. Chem Biol Interact, 208: 28-36.

Umadevi S, Gopi V, Simna SP, Parthasarathy A, Yousuf SM, Elangovan V. 2012. Studies on the cardio protective role of gallic acid against age-induced cell proliferation and oxidative stress in H9C2 (2-1) cells. Cardiovasc Toxicol, 12: 304-311.

Verdecchia P, Angeli F, Gattobigio R, Guerrieri M, Benemio G, Porcellati C. 2004. Does the reduction in systolic blood pressure alone explain the regression of left ventricular hypertrophy? J Hum Hypertens, 18: S23-S28.

Wang J, Chen H, Seth A, McCulloch CA. 2003. Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Physiol Heart Circ Physiol, 285: H1871-H1881.

Wang K, Zhu X, Zhang K, Zhu L, Zhou F. 2014. Investigation of gallic acid induced anticancer effect in human breast carcinoma mcf‐7 cells. J Biochem Mol Toxicol, 28: 387-393.

Zern TL, Fernandez ML. 2005. Cardioprotective effects of dietary polyphenols. J Nutr, 135: 2291-2294.

Zhang HY, Wang LF. 2002. Theoretical elucidation on structure–antioxidant activity relationships for indolinonic hydroxylamines. Bioorg Med Chem Lett, 12: 225-227.

Zhao G, Gao H, Qiu J, Lu W, Wei X. 2010. The molecular  mechanism  of  protective  effects of  grape  seed  Proanthocyanidin  extract  on reperfusion arrhythmias in rats in vivo. Biol Pharm Bull, 33: 759-762.