The neuroprotective mechanism of cinnamaldehyde against amyloid-β in neuronal SHSY5Y cell line: The role of N-methyl-D-aspartate, ryanodine, and adenosine receptors and glycogen synthase kinase-3β

Document Type: Original Research Article

Authors

1 Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

4 Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

Objective: Cinnamaldehyde may be responsible for some health benefits of cinnamon such as its neuroprotective effects. We aimed to investigate the cinnamaldehyde neuroprotective effects against amyloid beta (Aβ) in neuronal SHSY5Y cells and evaluate the contribution of N-methyl-D-aspartate (NMDA), ryanodine, and adenosine receptors and glycogen synthase kinase (GSK)-3β, to its neuroprotective effects.
Materials and Methods: After seeding the cells in 96-well plates, adenosine (20, 40, 80, and 120 µM), NMDA (20, 40, 80, and 120 µM), and dantrolene (as a ryanodine receptor antagonist; 2, 4, 6, 8, and 16 µM) were added to the medium containing Aβ25-35 and/or cinnamaldehyde. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide method was used to assess neurotoxicity and western blot to measure the GSK-3β protein level.
Results: Cinnamaldehyde (15, 20, 23, and 25 μM) significantly reversed Aβ-induced toxicity in SHSY5Y neuronal cells. Adenosine (20, 40, 80 and 120 μM) inhibited the neuroprotective effects of cinnamaldehyde (15 μM). NMDA (20, 40, 80, and 120 μM) reduced cinnamaldehyde (15 and 23 μM) neuroprotective effects against Aβ neurotoxicity. Dantrolene (2, 4, 8, and 16 μM) significantly reduced cinnamaldehyde (15 μM) neuroprotective effects. Cinnamaldehyde (15 and 23 μM) suppressed the Aβ-induced increment of GSK-3β protein level. 
Conclusion: NMDA and adenosine receptors suppression together with ryanodine receptors stimulation may be relevant to cinnamaldehyde neuroprotective effects against Aβ neurotoxicity. Moreover, the inhibition of GSK-3β may contribute to the cinnamaldehyde neuroprotection.

Keywords

Main Subjects


Allan Butterfield D. 2002. Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review.  Free Radic Res, 36: 1307-1313.

Anderson RA, Broadhurst CL, Polansky MM, Schmidt WF, Khan A, Flanagan VP, Schoene NW, Graves DJ. 2004. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity.  J Agric Food Chem, 52: 65-70.

Ataie Z, Mehrani H, Ghasemi A, Farrokhfall K. 2019. Cinnamaldehyde has beneficial effects against oxidative stress and nitric oxide metabolites in the brain of aged rats fed with long-term, high-fat diet.  J Funct Foods, 52: 545-551.

Berridge MJ, Bootman MD, Lipp P. 1998. Calcium-a life and death signal.  Nature, 395: 645-648.

Bhat RV, Budd Haeberlein SL, Avila J. 2004. Glycogen synthase kinase 3: a drug target for CNS therapies.  J Neurochem, 89: 1313-1317.

Bruno AM, Huang JY, Bennett DA, Marr RA, Hastings ML, Stutzmann GE. 2012. Altered ryanodine receptor expression in mild cognitive impairment and Alzheimer's disease.  Neurobiol Aging, 33: 1001.e1001-e1006.

Checler F. 1995. Processing of the β-amyloid precursor protein and its regulation in Alzheimer's disease.  J Neurochem, 65: 1431-1444.

Chen, Wang YW, Huang WS, Lee MM, Wood WG, Leung YM, Tsai HY. 2016. Trans-cinnamaldehyde, an essential oil in cinnamon powder, ameliorates cerebral ischemia-induced brain injury via inhibition of neuroinflammation through attenuation of iNOS, COX-2 expression and NFκ-B signaling pathway.  Neuromolecular Med, 18: 322-333.

Chen P, Gu Z, Liu W, Yan Z. 2007. Glycogen synthase kinase 3 regulates N-methyl-D-aspartate receptor channel trafficking and function in cortical neurons.  Mol Pharmacol, 72: 40-51.

Chui D-H, Tanahashi H, Ozawa K, Ikeda S, Checler F, Ueda O, Suzuki H, Araki W, Inoue H, Shirotani K. 1999. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation.  Nat Med, 5: 560-564.

Couturier K, Qin B, Batandier C, Awada M, Hininger-Favier I, Canini F, Leverve X, Roussel AM, Anderson RA. 2011. Cinnamon increases liver glycogen in an animal model of insulin resistance.  Metabolism, 60: 1590-1597.

Dall'Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR. 2007. Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25–35)-induced cognitive deficits in mice.  Exp Neurol, 203: 241-245.

Dall'lgna OP, Porciúncula LO, Souza DO, Cunha RA, Lara DR. 2003. Neuroprotection by caffeine and adenosine A2A receptor blockade of β-amyloid neurotoxicity.  Br J Pharmacol, 138: 1207-1209.

Danysz W, Parsons CG. 2012. Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine–searching for the connections.  Br J Pharmacol, 167: 324-352.

Delacourte A, Buée L. 2000. Tau pathology: a marker of neurodegenerative disorders.  Curr Opi Neurol, 13: 371-376.

Donley J, Hurt W, Stockert A. 2016. Effects of cinnamon extract on glycogen synthase kinase 3 phosphorylation of tau.  FASEB J, 30: 814.815-814.815.

Frydman-Marom A, Levin A, Farfara D, Benromano T, Scherzer-Attali R, Peled S, Vassar R, Segal D, Gazit E, Frenkel D. 2011. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer's disease animal models.  PLoS One, 6: e16564.

Gomada Y, Jamison BY, Maitin V, Vattem DA. 2012. Cinnamon decreases excitation toxicity in primary neuronal cultures from chick embryos.  FASEB J, 26: 1011-1025.

Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. 2011. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration.  Biochim Biophys Acta, 1808: 1380-1399.

Hernandez F, Lucas JJ, Avila J. 2013. GSK3 and tau: two convergence points in Alzheimer's disease.  J Alzheimers Dis, 33: S141-S144.

Ho S-C, Chang K-S, Chang P-W. 2013. Inhibition of neuroinflammation by cinnamon and its main components.  Food Chem, 138: 2275-2282.

Imparl-Radosevich J, Deas S, Polansky MM, Baedke DA, Ingebritsen TS, Anderson RA, Graves DJ. 1998. Regulation of PTP-1 and insulin receptor kinase by fractions from cinnamon: implications for cinnamon regulation of insulin signalling.  Horm Res Paediatr, 50: 177-182.

Keshavarz M, Farrokhi M, Amiri A. 2017. Caffeine neuroprotective mechanism against β-amyloid neurotoxicity in SHSY5Y cell line: involvement of adenosine, ryanodine, and N-methyl-D-aspartate receptors.  Adv Pharm Bull, 7: 579-584.

Klafke J, Da Silva M, Trevisan G, Rossato M, Da Silva C, Guerra G, Villarinho J, Rigo F, Dalmolin G, Gomez M. 2012. Involvement of the glutamatergic system in the nociception induced intrathecally for a TRPA1 agonist in rats.  Neuroscience, 222: 136-146.

Kwon B-M, Lee S-H, Cho Y-K, Bok S-H, So S-H, Youn M-R, Chang S-I. 1997. Synthesis and biological activity of cinnamaldehydes as angiogenesis inhibitors.  Bioorg Med Chem Lett, 7: 2473-2476.

LaFerla FM. 2002. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease.  Nat Rev Neurosci, 3: 862-872.

Lindeboom J, Weinstein H. 2004. Neuropsychology of cognitive ageing, minimal cognitive impairment, Alzheimer's disease, and vascular cognitive impairment.  Eur J Pharmacol, 490: 83-86.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent.  J Biol Chem, 193: 265-275.

Lüscher C, Malenka RC. 2012. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD).  Cold Spring Harb Perspect Biol, 4: a005710.

Lv C, Yuan X, Zeng H-W, Liu R-H, Zhang W-D. 2017. Protective effect of cinnamaldehyde against glutamate-induced oxidative stress and apoptosis in PC12 cells.  Eur J Pharmacol, 815: 487-494.

McPhersonx PS, Kim Y-K, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronadot R, Campbell KP. 1991. The brain ryanodine receptor: a caffeine-sensitive calcium release channel.  Neuron, 7: 17-25.

Peng J, Liang G, Inan S, Wu Z, Joseph DJ, Meng Q, Peng Y, Eckenhoff MF, Wei H. 2012. Dantrolene ameliorates cognitive decline and neuropathology in Alzheimer triple transgenic mice.  Neurosci Lett, 516: 274-279.

Peterson DW, George RC, Scaramozzino F, LaPointe NE, Anderson RA, Graves DJ, Lew J. 2009. Cinnamon extract inhibits tau aggregation associated with Alzheimer's disease in vitro.  J Alzheimers Dis, 17: 585-597.

Phiel CJ, Wilson CA, Lee VM-Y, Klein PS. 2003. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides.  Nature, 423: 435.

Sartorius T, Peter A, Schulz N, Drescher A, Bergheim I, Machann J, Schick F, Siegel-Axel D, Schürmann A, Weigert C, Häring H-U, Hennige AM. 2014. Cinnamon extract improves insulin sensitivity in the brain and lowers liver fat in mouse models of obesity.  PLoS One, 9: e92358.

Shimada Y, Goto H, Kogure T, Kohta K, Shintani T, Itoh T, Terasawa K. 2000. Extract prepared from the bark of Cinnamomum cassia Blume prevents glutamate‐induced neuronal death in cultured cerebellar granule cells.  Phytother Res, 14: 466-468.

Stavinoha RC, Vattem DA. 2015. Potential neuroprotective effects of cinnamon.  Int J Appl Res Nat Prod 8: 24-46.

Supnet C, Bezprozvanny I. 2010. The dysregulation of intracellular calcium in Alzheimer disease.  Cell Calcium, 47: 183-189.

Szatmari E, Habas A, Yang P, Zheng J-J, Hagg T, Hetman M. 2005. A positive feedback loop between glycogen synthase kinase 3β and protein phosphatase 1 after stimulation of NR2B NMDA receptors in forebrain neurons.  J Biol Chem, 280: 37526-37535.

Takashima A. 2006. GSK-3 is essential in the pathogenesis of Alzheimer's disease.  J Alzheimers Dis, 9: 309-317.

Zhang H, Sun S, Herreman A, De Strooper B, Bezprozvanny I. 2010. Role of presenilins in neuronal calcium homeostasis.  J Neurosci, 30: 8566-8580.

Zhao J, Zhang X, Dong L, Wen Y, Zheng X, Zhang C, Chen R, Zhang Y, Li Y, He T. 2015. Cinnamaldehyde inhibits inflammation and brain damage in a mouse model of permanent cerebral ischaemia.  Br J Pharmacol, 172: 5009-5023.